Уточнить поиск
Результаты 41-50 из 972
Conjugative mating assays for sequence-specific analysis of transfer proteins involved in bacterial conjugation Полный текст
2017
Erdogan, Fettah | Lento, Cristina | Yaseen, Ayat | Nowroozi-Dayeni, Roksana | Kheyson, Sasha | Audette, Gerald F.
The transfer of genetic material by bacterial conjugation is a process that takes place via complexes formed by specific transfer proteins. In Escherichia coli, these transfer proteins make up a DNA transfer machinery known as the mating pair formation, or DNA transfer complex, which facilitates conjugative plasmid transfer. The objective of this paper is to provide a method that can be used to determine the role of a specific transfer protein that is involved in conjugation using a series of deletions and/or point mutations in combination with mating assays. The target gene is knocked out on the conjugative plasmid and is then provided in trans through the use of a small recovery plasmid harboring the target gene. Mutations affecting the target gene on the recovery plasmid can reveal information about functional aspects of the target protein that result in the alteration of mating efficiency of donor cells harboring the mutated gene. Alterations in mating efficiency provide insight into the role and importance of the particular transfer protein, or a region therein, in facilitating conjugative DNA transfer. Coupling this mating assay with detailed three-dimensional structural studies will provide a comprehensive understanding of the function of the conjugative transfer protein as well as provide a means for identifying and characterizing regions of protein-protein interaction.
Показать больше [+] Меньше [-]Wild-type blocking pcr combined with direct sequencing as a highly sensitive method for detection of low-frequency somatic mutations Полный текст
2017
Albitar, Adam Z. | Ma, Wanlong | Albitar, Maher
Accurate detection and identification of low frequency mutations can be problematic when assessing residual disease after therapy, screening for emerging resistance mutations during therapy, or when patients have few circulating tumor cells. Wild-type blocking PCR followed by sequencing analysis offers high sensitivity, flexibility, and simplicity as a methodology for detecting these low frequency mutations. By adding a custom designed locked nucleic acid oligonucleotide to a new or previously established conventional PCR based sequencing assay, sensitivities of approximately 1 mutant allele in a background of 1,000 WT alleles can be achieved (1:1,000). Sequencing artifacts associated with deamination events commonly found in formalin fixed paraffin embedded tissues can be partially remedied by the use of uracil DNA glycosylase during extraction steps. The optimized protocol here is specific for detecting MYD88 mutation, but can serve as a template to design any WTB-PCR assay. Advantages of the WTB-PCR assay over other commonly utilized assays for the detection of low frequency mutations including allele specific PCR and real-time quantitative PCR include fewer occurrences of false positives, greater flexibility and ease of implementation, and the ability to detect both known and unknown mutations.
Показать больше [+] Меньше [-]Assessing working memory in children: the comprehensive assessment battery for children – working memory (cabc-wm) Полный текст
2017
Cabbage, Kathryn | Brinkley, Shara | Gray, Shelley | Alt, Mary | Cowan, Nelson | Green, Samuel | Kuo, Trudy | Hogan, Tiffany P.
The Comprehensive Assessment Battery for Children - Working Memory (CABC-WM) is a computer-based battery designed to assess different components of working memory in young school-age children. Working memory deficits have been identified in children with language-based learning disabilities, including dyslexia1,2 and language impairment3,4, but it is not clear whether these children exhibit deficits in subcomponents of working memory, such as visuospatial or phonological working memory. The CABC-WM is administered on a desktop computer with a touchscreen interface and was specifically developed to be engaging and motivating for children. Although the long-term goal of the CABC-WM is to provide individualized working memory profiles in children, the present study focuses on the initial success and utility of the CABC-WM for measuring central executive, visuospatial, phonological loop, and binding constructs in children with typical development. Immediate next steps are to administer the CABC-WM to children with specific language impairment, dyslexia, and comorbid specific language impairment and dyslexia.
Показать больше [+] Меньше [-]Organ culture and whole mount immunofluorescence staining of mouse wolffian ducts Полный текст
2017
Manish Kumar, | Tanwar, Pradeep
Tubal morphogenesis is a fundamental requirement for the development of most mammalian organs, including the male reproductive system. The epididymis, an integral part of the male reproductive tract, is responsible for sperm storage, maturation, and transport. The adult epididymis is a highly coiled tube that develops from a simple and straight embryonic precursor known as Wolffian duct (WD). Proper coiling of the epididymis is essential for male fertility, as sperm in the testis are unable to fertilize an oocyte. However, the mechanism responsible for epididymal development and coiling remains unclear, partially due to the lack of whole organ culture and imaging methods. In this study, we describe an in vitro culture system and whole mount immunofluorescence protocol to better visualize the process of WD coiling and development, which may also be applied to study other tubular organs.
Показать больше [+] Меньше [-]Low-density primary hippocampal neuron culture Полный текст
2017
Roppongi, Reiko T. | Champagne-Jorgensen, Kevin P. | Siddiqui, Tabrez J.
The ability to probe the structure and physiology of individual nerve cells in culture is crucial to the study of neurobiology, and allows for flexibility in genetic and chemical manipulation of individual cells or defined networks. Such ease of manipulation is simpler in the reduced culture system when compared to the intact brain tissue. While many methods for the isolation and growth of these primary neurons exist, each has its own limitations. This protocol describes a method for culturing low-density and high-purity rodent embryonic hippocampal neurons on glass coverslips, which are then suspended over a monolayer of glial cells. This 'sandwich culture' allows for exclusive long-term growth of a population of neurons while allowing for trophic support from the underlying glial monolayer. When neurons are of sufficient age or maturity level, the neuron coverslips can be flipped-out of the glial dish and used in imaging or functional assays. Neurons grown by this method typically survive for several weeks and develop extensive arbors, synaptic connections, and network properties.
Показать больше [+] Меньше [-]A mouse model of single and repetitive mild traumatic brain injury Полный текст
2017
Main, Bevan S. | Sloley, Stephanie S. | Villapol, Sonia | Zapple, David N. | Burns, Mark P.
Mild Traumatic Brain Injury (mTBI) can result in the acute loss of brain function, including a period of confusion, a loss of consciousness (LOC), focal neurological deficits and even amnesia. Athletes participating in contact sports are at high risk of exposure to large number of mTBIs. In terms of the level of injury in a sporting athlete, a mTBI is defined as a mild injury that does not cause gross pathological changes, but does cause short-term neurological deficits that are spontaneously resolved. Despite previous attempts to model mTBI in mice and rats, many have reported gross adverse effects including skull fractures, intracerebral bleeding, axonal injury and neuronal cell death. Herein, we describe our highly reproducible animal model of mTBI that reproduces clinically relevant symptoms. This model uses a custom made pneumatic impactor device to deliver a closed-head trauma. This impact is made under precise velocity and deformation parameters, creating a reliable and reproducible model to examine the mechanisms that contribute to effects of single or repetitive concussive mTBI.
Показать больше [+] Меньше [-]Development of a hepatitis b virus reporter system to monitor the early stages of the replication cycle Полный текст
2017
Nishitsuji, Hironori | Yamamoto, Hiromi | Shiina, Ritsuko | Harada, Keisuke | Ujino, Saneyuki | Shimotohno, Kunitada
Currently, it is possible to construct recombinant forms of various viruses, such as human immunodeficiency virus 1 (HIV-1) and hepatitis C virus (HCV), that carry foreign genes such as a reporter or marker protein in their genomes. These recombinant viruses usually faithfully mimic the life cycle of the original virus in infected cells and exhibit the same host range dependence. The development of a recombinant virus enables the efficient screening of inhibitors and the identification of specific host factors. However, to date the construction of recombinant hepatitis B virus (HBV) has been difficult because of various experimental limitations. The main limitation is the compact genome size of HBV, and a fairly strict genome size that does not exceed 1.3 genome sizes, that must be packaged into virions. Thus, the size of a foreign gene to be inserted should be smaller than 0.4 kb if no deletion of the genome DNA is to be performed. Therefore, to overcome this size limitation, the deletion of some HBV DNA is required. Here, we report the construction of recombinant HBV encoding a reporter gene to monitor the early stage of the HBV replication cycle by replacing part of the HBV core-coding region with the reporter gene by deleting part of the HBV pol coding region. Detection of recombinant HBV infection, monitored by the reporter activity, was highly sensitive and less expensive than detection using the currently available conventional methods to evaluate HBV infection. This system will be useful for a number of applications including high-throughput screening for the identification of anti-HBV inhibitors, host factors and virus-susceptible cells.
Показать больше [+] Меньше [-]Measuring g-protein-coupled receptor signaling via radio-labeled gtp binding Полный текст
2017
Vasavda, Chirag | Zaccor, Nicholas W. | Scherer, Paul C. | Sumner, Charlotte J. | Snyder, Solomon H.
G-Protein-Coupled Receptors (GPCRs) are a large family of transmembrane receptors that play critical roles in normal cellular physiology and constitute a major pharmacological target for multiple indications, including analgesia, blood pressure regulation, and the treatment of psychiatric disease. Upon ligand binding, GPCRs catalyze the activation of intracellular G-proteins by stimulating the incorporation of guanosine triphosphate (GTP). Activated G-proteins then stimulate signaling pathways that elicit cellular responses. GPCR signaling can be monitored by measuring the incorporation of a radiolabeled and non-hydrolyzable form of GTP, [35S]guanosine-5'-O-(3-thio)triphosphate ([35S]GTPγS), into G-proteins. Unlike other methods that assess more downstream signaling processes, [35S]GTPγS binding measures a proximal event in GPCR signaling and, importantly, can distinguish agonists, antagonists, and inverse agonists. The present protocol outlines a sensitive and specific method for studying GPCR signaling using crude membrane preparations of an archetypal GPCR, the µ-opioid receptor (MOR1). Although alternative approaches to fractionate cells and tissues exist, many are cost-prohibitive, tedious, and/or require non-standard laboratory equipment. The present method provides a simple procedure that enriches functional crude membranes. After isolating MOR1, various pharmacological properties of its agonist, [D-Ala, N-MePhe, Gly-ol]-enkephalin (DAMGO), and antagonist, naloxone, were determined.
Показать больше [+] Меньше [-]Predicting gene silencing through the spatiotemporal control of sirna release from photo-responsive polymeric nanocarriers Полный текст
2017
Greco, Chad T. | Epps, III, Thomas H. | Sullivan, Millicent O.
New materials and methods are needed to better control the binding vs. release of nucleic acids for a wide range of applications that require the precise regulation of gene activity. In particular, novel stimuli-responsive materials with improved spatiotemporal control over gene expression would unlock translatable platforms in drug discovery and regenerative medicine technologies. Furthermore, an enhanced ability to control nucleic acid release from materials would enable the development of streamlined methods to predict nanocarrier efficacy a priori, leading to expedited screening of delivery vehicles. Herein, we present a protocol for predicting gene silencing efficiencies and achieving spatiotemporal control over gene expression through a modular photo-responsive nanocarrier system. Small interfering RNA (siRNA) is complexed with mPEG-b-poly(5-(3-(amino)propoxy)-2-nitrobenzyl methacrylate) (mPEG-b-P(APNBMA)) polymers to form stable nanocarriers that can be controlled with light to facilitate tunable, on/off siRNA release. We outline two complementary assays employing fluorescence correlation spectroscopy and gel electrophoresis for the accurate quantification of siRNA release from solutions mimicking intracellular environments. Information gained from these assays was incorporated into a simple RNA interference (RNAi) kinetic model to predict the dynamic silencing responses to various photo-stimulus conditions. In turn, these optimized irradiation conditions allowed refinement of a new protocol for spatiotemporally controlling gene silencing. This method can generate cellular patterns in gene expression with cell-to-cell resolution and no detectable off-target effects. Taken together, our approach offers an easy-to-use method for predicting dynamic changes in gene expression and precisely controlling siRNA activity in space and time. This set of assays can be readily adapted to test a wide variety of other stimuli-responsive systems in order to address key challenges pertinent to a multitude of applications in biomedical research and medicine.
Показать больше [+] Меньше [-]Collection of serum- and feeder-free mouse embryonic stem cell-conditioned medium for a cell-free approach Полный текст
2017
Bae, Yun-Ui | Sung, Hoon-Ki | Kim, Jae-Ryong
The capacity of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to generate various cell types has opened new avenues in the field of regenerative medicine. However, despite their benefits, the tumorigenic potential of ESCs and iPSCs has long been a barrier for clinical applications. Interestingly, it has been shown that ESCs produce several soluble factors that can promote tissue regeneration and delay cellular aging, suggesting that ESCs and iPSCs can also be utilized as a cell-free intervention method. Therefore, the method for harvesting mouse embryonic stem cell (mESC)-conditioned medium (mESC-CM) with minimal contamination of serum components (fetal bovine serum, FBS) and feeder cells (mouse embryonic fibroblasts, MEFs) has been highly demanded. Here, the present study demonstrates an optimized method for the collection of mESC-CM under serum- and feeder-free conditions and for the characterization of mESC-CM using senescence-associated multiple readouts. This protocol will provide a method to collect pure mESC-specific secretory factors without serum and feeder contamination.
Показать больше [+] Меньше [-]