Уточнить поиск
Результаты 1-10 из 78
Organotypic culture of adult rabbit retina Полный текст
2007
Lye, Ming H. | Jakobs, Tatjana C. | Masland, Richard H. | Koizumi, Amane
Organotypic culture systems of functional neural tissues are important tools in neurobiological research. Ideally, such a system should be compatible with imaging techniques, genetic manipulation, and electrophysiological recording. Here we present a simple interphase tissue culture system for adult rabbit retina that requires no specialized equipment and very little maintenance. We demonstrate the dissection and incubation of rabbit retina and particle-mediated gene transfer of plasmids encoding GFP or a variety of subcellular markers into retinal ganglion cells. Rabbit retinas cultured this way can be kept alive for up to 6 days with very little changes of the overall anatomical structure or the morphology of individual ganglion- and amacrine cells.
Показать больше [+] Меньше [-]Maldi sample preparation: the ultra thin layer method Полный текст
2007
Fenyo, David | Wang, Qingjun | DeGrasse, Jeffrey A. | Padovan, Julio C. | Cadene, Martine | Chait, Brian T.
This video demonstrates the preparation of an ultra-thin matrix/analyte layer for analyzing peptides and proteins by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) 1,2. The ultra-thin layer method involves the production of a substrate layer of matrix crystals (alpha-cyano-4-hydroxycinnamic acid) on the sample plate, which serves as a seeding ground for subsequent crystallization of a matrix/analyte mixture. Advantages of the ultra-thin layer method over other sample deposition approaches (e.g. dried droplet) are that it provides (i) greater tolerance to impurities such as salts and detergents, (ii) better resolution, and (iii) higher spatial uniformity. This method is especially useful for the accurate mass determination of proteins. The protocol was initially developed and optimized for the analysis of membrane proteins and used to successfully analyze ion channels, metabolite transporters, and receptors, containing between 2 and 12 transmembrane domains 2. Since the original publication, it has also shown to be equally useful for the analysis of soluble proteins. Indeed, we have used it for a large number of proteins having a wide range of properties, including those with molecular masses as high as 380 kDa 3. It is currently our method of choice for the molecular mass analysis of all proteins. The described procedure consistently produces high-quality spectra, and it is sensitive, robust, and easy to implement.
Показать больше [+] Меньше [-]Drawing blood from rats through the saphenous vein and by cardiac puncture Полный текст
2007
Beeton, Christine | García, Adriana | Chandy, K George
Drawing blood from rodents is necessary for a large number of both in vitro and in vivo studies. Sites of blood draws are numerous in rodents: retro-orbital sinus, jugular vein, maxillary vein, saphenous vein, heart. Each technique has its advantages and disadvantages, and some are not approved any more in some countries (e.g., retro-orbital draws in Holland). A discussion of different techniques for drawing blood are available 1-3. Here, we present two techniques for drawing blood from rats, each with its specific applications. Blood draw from the saphenous vein, provided it is done properly, induces minimal distress in animals and does not require anesthesia. This technique allows repeated draws of small amounts of blood, such as needed for pharmacokinetic studies 4,5, determining plasma chemistry, or blood counts 6. Cardiac puncture allows the collection of large amounts of blood from a single animal (up to 10 ml of blood can be drawn from a 150 g rat). This technique is therefore very useful as a terminal procedure when drawing blood from the saphenous would not provide a large enough sample. We use cardiac puncture when we need sufficient amounts of serum from a specific strain of rats to grow T lymphocyte lines in vitro 4-9.
Показать больше [+] Меньше [-]Transfecting human neural stem cells with the amaxa nucleofector Полный текст
2007
Marchenko, Steven | Flanagan, Lisa
Transfection of primary mammalian neural cells, such as human neural stem/precursor cells (hNSPCs), with commonly used cationic lipid transfection reagents has often resulted in poor cell viability and low transfection efficiency. Other mechanical methods of introducing a gene of interest, such as a “gene gun” or microinjection, are also limited by poor cell viability and low numbers of transfected cells. The strategy of using viral constructs to introduce an exogenous gene into primary cells has been constrained by both the amount of time and labor required to create viral vectors and potential safety concerns. We describe here a step-by-step protocol for transfecting hNSPCs using Amaxa's Nucleofector device and technology with electrical current parameters and buffer solutions specifically optimized for transfecting neural stem cells. Using this protocol, we have achieved initial transfection efficiencies of ~35% and ~70% after stable transfection. The protocol entails combining a high number of hNSPCs with the DNA to be transfected in the appropriate buffer followed by electroporation with the Nucleofector device.
Показать больше [+] Меньше [-]Preparing e18 cortical rat neurons for compartmentalization in a microfluidic device Полный текст
2007
Harris, Joseph | Lee, Hyuna | Tu, Christina Tu | Cribbs, David | Cotman, Carl | Jeon, Noo Li
In this video, we demonstrate the preparation of E18 cortical rat neurons. E18 cortical rat neurons are obtained from E18 fetal rat cortex previously dissected and prepared. The E18 cortex is, upon dissection, immediately dissociated into individual neurons. It is possible to store E18 cortex in Hibernate E buffer containing B27 at 4°C for up to a week before the dissociation is performed. However, there will be a drop in cell viability. Typically we obtain our E18 Cortex fresh. It is transported to the lab in ice cold Calcium free Magnesium free dissection buffer (CMFM). Upon arrival, trypsin is added to the cortex to a final concentration of 0.125%. The cortex is then incubated at 37°C for 8 minutes. DMEM containing 10% FBS is added to the cortex to stop the reaction. The cortex is then centrifuged at 2500 rpm for 2 minutes. The supernatant is removed and 2 ml of Neural Basal Media (NBM) containing 2% B27 (vol/vol) and 0.25% Glutamax (vol/vol) is added to the cortex which is then re-suspended by pipetting up and down. Next, the cortex is triturated with previously fire polished glass pipettes, each with a successive smaller opening. After triturating, the cortex is once again centrifuged at 2500 rpm for 2 minutes. The supernatant is then removed and the cortex pellet re-suspended with 2 ml of NBM containing B27 and Glutamax. The cell suspension is then passed through a 40 um nylon cell strainer. Next the cells are counted. The neurons are now ready for loading into the neuron microfluidic device.
Показать больше [+] Меньше [-]Transformation of plasmid dna into e. coli using the heat shock method Полный текст
2007
Froger, Alexandrine | Hall, James E.
Transformation of plasmid DNA into E. coli using the heat shock method is a basic technique of molecular biology. It consists of inserting a foreign plasmid or ligation product into bacteria. This video protocol describes the traditional method of transformation using commercially available chemically competent bacteria from Genlantis. After a short incubation in ice, a mixture of chemically competent bacteria and DNA is placed at 42°C for 45 seconds (heat shock) and then placed back in ice. SOC media is added and the transformed cells are incubated at 37°C for 30 min with agitation. To be assured of isolating colonies irrespective of transformation efficiency, two quantities of transformed bacteria are plated. This traditional protocol can be used successfully to transform most commercially available competent bacteria. The turbocells from Genlantis can also be used in a novel 3-minute transformation protocol, described in the instruction manual.
Показать больше [+] Меньше [-]Application of light-cured dental adhesive resin for mounting electrodes or microdialysis probes in chronic experiments Полный текст
2007
Okumura, Tetsu | Okanoya, Kazuo | Tani, Jun
In chronic recording experiments, self-curing dental acrylic resins have been used as a mounting base of electrodes or microdialysis-probes. Since these acrylics do not bond to the bone, screws have been used as anchors. However, in small experimental animals like finches or mouse, their craniums are very fragile and can not successfully hold the anchors. In this report, we propose a new application of light-curing dental resins for mounting base of electrodes or microdialysis probes in chronic experiments. This material allows direct bonding to the cranium. Therefore, anchor screws are not required and surgical field can be reduced considerably. Past experiences show that the bonding effect maintains more than 2 months. Conventional resin's window of time when the materials are pliable and workable is a few minutes. However, the window of working time for these dental adhesives is significantly wider and adjustable.
Показать больше [+] Меньше [-]Interview: glycolipid antigen presentation by cd1d and the therapeutic potential of nkt cell activation Полный текст
2007
Kronenberg, Mitchell
Natural Killer T cells (NKT) are critical determinants of the immune response to cancer, regulation of autioimmune disease, clearance of infectious agents, and the development of artheriosclerotic plaques. In this interview, Mitch Kronenberg discusses his laboratory's efforts to understand the mechanism through which NKT cells are activated by glycolipid antigens. Central to these studies is CD1d - the antigen presenting molecule that presents glycolipids to NKT cells. The advent of CD1d tetramer technology, a technique developed by the Kronenberg lab, is critical for the sorting and identification of subsets of specific glycolipid-reactive T cells. Mitch explains how glycolipid agonists are being used as therapeutic agents to activate NKT cells in cancer patients and how CD1d tetramers can be used to assess the state of the NKT cell population in vivo following glycolipid agonist therapy. Current status of ongoing clinical trials using these agonists are discussed as well as Mitch's prediction for areas in the field of immunology that will have emerging importance in the near future.
Показать больше [+] Меньше [-]Microfabricated post-array-detectors (mpads): an approach to isolate mechanical forces Полный текст
2007
Desai, Ravi A. | Yang, Michael T. | Sniadecki, Nathan J. | Legant, Wesley R. | Chen, Christopher S.
In this video, we will present our approach to measure cellular traction forces using a microfabricated array of posts. Traction forces are generated through myosin-actin interactions and play an important role in our physiology. During development, they enable cells to move from one location to the next in order to form the early structures of tissue. Traction forces help in the healing processes. They are necessary for the proper closure of wounds or the migration and crawling of leukocytes through our body. These same forces can be detrimental to our health in the case of cancer metastasis or vascular growth towards a tumor. The most common method by which to study cells in vitro has been to use a glass or polystyrene dish. However, the rigidity of the substrates makes it impossible to physically measure cell traction forces, and there are relatively few methods to study traction forces. Our lab has developed a technique to overcome these limitations. The method is based on a vertical array of flexible cantilevers, the stiffness and size scale of which are such that individual cells spread across many cantilevers and deflect them in the process. The pillars we use are 3 μm in diameter, 10 μm tall, and are configured in a regular array with 9 μm center-to-center spacing. But these physical dimensions can be readily varied to accommodate a variety of studies. We start with a silicon master, but the final posts are made out of silicone rubber called poly (dimethyl siloxane), or PDMS. We can measure the deflections under a microscope and calculate the magnitude and direction of traction forces required to produce the observed deflections. We call these substrates microfabricated post-array-detectors, or mPADs. Here, we will show you how we fabricate and use the mPADs to assess modulations of cellular contractility.
Показать больше [+] Меньше [-]Western blotting using the invitrogen nupage novex bis tris minigels Полный текст
2007
Western Blotting (or immunoblotting) is a standard laboratory procedure allowing investigators to verify the expression of a protein, determine the relative amount of the protein present in different samples, and analyze the results of co-immunoprecipitation experiments. In this method, a target protein is detected with a specific primary antibody in a given sample of tissue homogenate or extract. Protein separation according to molecular weight is achieved using denaturing SDS-PAGE. After transfer to a membrane, the target protein is probed with a specific primary antibody and detected by chemiluminescence. Since its first description, the western-blotting technique has undergone several improvements, including pre-cast gels and user-friendly equipment. In our laboratory, we have chosen to use the commercially available NuPAGE electrophoresis system from Invitrogen. It is an innovative neutral pH, discontinuous SDS-PAGE, pre-cast mini-gel system. This system presents several advantages over the traditional Laemmli technique including: i) a longer shelf life of the pre-cast gels ranging from 8 months to 1 year; ii) a broad separation range of molecular weights from 1 to 400 kDa depending of the type of gel used; and iii) greater versatility (range of acrylamide percentage, the type of gel, and the ionic composition of the running buffer). The procedure described in this video article utilizes the Bis-Tris discontinuous buffer system with 4-12% Bis-Tris gradient gels and MES running buffer, as an illustration of how to perform a western-blot using the Invitrogen NuPAGE electrophoresis system. In our laboratory, we have obtained good and reproducible results for various biochemical applications using this western-blotting method.
Показать больше [+] Меньше [-]