Уточнить поиск
Результаты 1-10 из 753
High Throughput Quantitative Expression Screening and Purification Applied to Recombinant Disulfide-rich Venom Proteins Produced in <em>E. coli</em> Полный текст
2014
Saez, Natalie | Nozach, Hervé | Blemont, Marilyne | Vincentelli, Renaud | Architecture et fonction des macromolécules biologiques (AFMB) ; Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
High Throughput Quantitative Expression Screening and Purification Applied to Recombinant Disulfide-rich Venom Proteins Produced in <em>E. coli</em> Полный текст
2014
Saez, Natalie | Nozach, Hervé | Blemont, Marilyne | Vincentelli, Renaud | Architecture et fonction des macromolécules biologiques (AFMB) ; Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience
Показать больше [+] Меньше [-]High throughput quantitative expression screening and purification applied to recombinant disulfide-rich venom proteins produced in E. coli Полный текст
2014
Saez, Natalie J. | Nozach, Hervé | Blemont, Marilyne | Vincentelli, Renaud
Escherichia coli (E. coli) is the most widely used expression system for the production of recombinant proteins for structural and functional studies. However, purifying proteins is sometimes challenging since many proteins are expressed in an insoluble form. When working with difficult or multiple targets it is therefore recommended to use high throughput (HTP) protein expression screening on a small scale (1-4 ml cultures) to quickly identify conditions for soluble expression. To cope with the various structural genomics programs of the lab, a quantitative (within a range of 0.1-100 mg/L culture of recombinant protein) and HTP protein expression screening protocol was implemented and validated on thousands of proteins. The protocols were automated with the use of a liquid handling robot but can also be performed manually without specialized equipment. Disulfide-rich venom proteins are gaining increasing recognition for their potential as therapeutic drug leads. They can be highly potent and selective, but their complex disulfide bond networks make them challenging to produce. As a member of the FP7 European Venomics project (www.venomics.eu), our challenge is to develop successful production strategies with the aim of producing thousands of novel venom proteins for functional characterization. Aided by the redox properties of disulfide bond isomerase DsbC, we adapted our HTP production pipeline for the expression of oxidized, functional venom peptides in the E. coli cytoplasm. The protocols are also applicable to the production of diverse disulfide-rich proteins. Here we demonstrate our pipeline applied to the production of animal venom proteins. With the protocols described herein it is likely that soluble disulfide-rich proteins will be obtained in as little as a week. Even from a small scale, there is the potential to use the purified proteins for validating the oxidation state by mass spectrometry, for characterization in pilot studies, or for sensitive micro-assays.
Показать больше [+] Меньше [-]AFM-based mapping of the elastic properties of cell walls: at tissue, cellular, and subcellular resolutions Полный текст
2014
Peaucelle, Alexis | Institut Jean-Pierre Bourgin (IJPB) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech
AFM-based mapping of the elastic properties of cell walls: at tissue, cellular, and subcellular resolutions Полный текст
2014
Peaucelle, Alexis | Institut Jean-Pierre Bourgin (IJPB) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech
Peaucelle, AlexisJournal of visualized experiments : JoVEJ Vis Exp. 2014 Jul 24;(89). doi: 10.3791/51317. | We describe a recently developed method to measure mechanical properties of the surfaces of plant tissues using atomic force microscopy (AFM) micro/nano-indentations, for a JPK AFM. Specifically, in this protocol we measure the apparent Young's modulus of cell walls at subcellular resolutions across regions of up to 100 microm x 100 microm in floral meristems, hypocotyls, and roots. This requires careful preparation of the sample, the correct selection of micro-indenters and indentation depths. To account for cell wall properties only, measurements are performed in highly concentrated solutions of mannitol in order to plasmolyze the cells and thus remove the contribution of cell turgor pressure. In contrast to other extant techniques, by using different indenters and indentation depths, this method allows simultaneous multiscale measurements, i.e. at subcellular resolutions and across hundreds of cells comprising a tissue. This means that it is now possible to spatially-temporally characterize the changes that take place in the mechanical properties of cell walls during development, enabling these changes to be correlated with growth and differentiation. This represents a key step to understand how coordinated microscopic cellular changes bring about macroscopic morphogenetic events. However, several limitations remain: the method can only be used on fairly small samples (around 100 microm in diameter) and only on external tissues; the method is sensitive to tissue topography; it measures only certain aspects of the tissue's complex mechanical properties. The technique is being developed rapidly and it is likely that most of these limitations will be resolved in the near future.
Показать больше [+] Меньше [-]Afm-based mapping of the elastic properties of cell walls: at tissue, cellular, and subcellular resolutions Полный текст
2014
Peaucelle, Alexis
We describe a recently developed method to measure mechanical properties of the surfaces of plant tissues using atomic force microscopy (AFM) micro/nano-indentations, for a JPK AFM. Specifically, in this protocol we measure the apparent Young’s modulus of cell walls at subcellular resolutions across regions of up to 100 µm x 100 µm in floral meristems, hypocotyls, and roots. This requires careful preparation of the sample, the correct selection of micro-indenters and indentation depths. To account for cell wall properties only, measurements are performed in highly concentrated solutions of mannitol in order to plasmolyze the cells and thus remove the contribution of cell turgor pressure. In contrast to other extant techniques, by using different indenters and indentation depths, this method allows simultaneous multiscale measurements, i.e. at subcellular resolutions and across hundreds of cells comprising a tissue. This means that it is now possible to spatially-temporally characterize the changes that take place in the mechanical properties of cell walls during development, enabling these changes to be correlated with growth and differentiation. This represents a key step to understand how coordinated microscopic cellular changes bring about macroscopic morphogenetic events. However, several limitations remain: the method can only be used on fairly small samples (around 100 µm in diameter) and only on external tissues; the method is sensitive to tissue topography; it measures only certain aspects of the tissue’s complex mechanical properties. The technique is being developed rapidly and it is likely that most of these limitations will be resolved in the near future.
Показать больше [+] Меньше [-]Testing drosophila olfaction with a y-maze assay Полный текст
2014
Simonnet, Mégane | Berthelot-Grosjean, Martine | Grosjean, Yaël | Centre des Sciences du Goût et de l'Alimentation [Dijon] (CSGA) ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS) | the European Research Council (ERC Starting Grant, GliSFCo-311403), the Agence Nationale de la Recherche (ANR-JCJC, GGCB-2010), the Conseil Régional de Bourgogne (Faber), and the CNRS
Testing drosophila olfaction with a y-maze assay Полный текст
2014
Simonnet, Mégane | Berthelot-Grosjean, Martine | Grosjean, Yaël | Centre des Sciences du Goût et de l'Alimentation [Dijon] (CSGA) ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS) | the European Research Council (ERC Starting Grant, GliSFCo-311403), the Agence Nationale de la Recherche (ANR-JCJC, GGCB-2010), the Conseil Régional de Bourgogne (Faber), and the CNRS
Detecting signals from the environment is essential for animals to ensure their survival. To this aim, they use environmental cues such as vision, mechanoreception, hearing, and chemoperception through taste, via direct contact or through olfaction, which represents the response to a volatile molecule acting at longer range. Volatile chemical molecules are very important signals for most animals in the detection of danger, a source of food, or to communicate between individuals. Drosophila melanogaster is one of the most common biological models for scientists to explore the cellular and molecular basis of olfaction. In order to highlight olfactory abilities of this small insect, we describe a modified choice protocol based on the Y-maze test classically used with mice. Data obtained with Y-mazes give valuable information to better understand how animals deal with their perpetually changing environment. We introduce a step-by-step protocol to study the impact of odorants on fly exploratory response using this Y-maze assay.
Показать больше [+] Меньше [-]Testing Drosophila olfaction with a y-maze assay Полный текст
2014
Simonnet, Mégane M. | Berthelot-Grosjean, Martine | Grosjean, Yael
Detecting signals from the environment is essential for animals to ensure their survival. To this aim, they use environmental cues such as vision, mechanoreception, hearing, and chemoperception through taste, via direct contact or through olfaction, which represents the response to a volatile molecule acting at longer range. Volatile chemical molecules are very important signals for most animals in the detection of danger, a source of food, or to communicate between individuals. Drosophila melanogaster is one of the most common biological models for scientists to explore the cellular and molecular basis of olfaction. In order to highlight olfactory abilities of this small insect, we describe a modified choice protocol based on the Y-maze test classically used with mice. Data obtained with Y-mazes give valuable information to better understand how animals deal with their perpetually changing environment. We introduce a step-by-step protocol to study the impact of odorants on fly exploratory response using this Y-maze assay.
Показать больше [+] Меньше [-]Testing drosophila olfaction with a y-maze assay Полный текст
2014
Simonnet, Mégane | Berthelot-Grosjean, Martine | Grosjean, Yaël | Centre des Sciences du Goût et de l'Alimentation [Dijon] (CSGA) ; Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS) | the European Research Council (ERC Starting Grant, GliSFCo-311403), the Agence Nationale de la Recherche (ANR-JCJC, GGCB-2010), the Conseil Régional de Bourgogne (Faber), and the CNRS
Detecting signals from the environment is essential for animals to ensure their survival. To this aim, they use environmental cues such as vision, mechanoreception, hearing, and chemoperception through taste, via direct contact or through olfaction, which represents the response to a volatile molecule acting at longer range. Volatile chemical molecules are very important signals for most animals in the detection of danger, a source of food, or to communicate between individuals. Drosophila melanogaster is one of the most common biological models for scientists to explore the cellular and molecular basis of olfaction. In order to highlight olfactory abilities of this small insect, we describe a modified choice protocol based on the Y-maze test classically used with mice. Data obtained with Y-mazes give valuable information to better understand how animals deal with their perpetually changing environment. We introduce a step-by-step protocol to study the impact of odorants on fly exploratory response using this Y-maze assay.
Показать больше [+] Меньше [-]Preparation of primary myogenic precursor cell/myoblast cultures from basal vertebrate lineages Полный текст
2014
Froehlich, Jacob Michael | Seiliez, Iban | Gabillard, Jean-Charles | Biga, Peggy R. | Department of Biology ; University of Alabama [Birmingham] (UAB) | Nutrition, Aquaculture et Génomique (NUAGE) ; Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Laboratoire de Physiologie et Génomique des Poissons (LPGP) ; Institut National de la Recherche Agronomique (INRA)-Structure Fédérative de Recherche en Biologie et Santé de Rennes (Biosit : Biologie - Santé - Innovation Technologique) | University of Alabama at Birmingham Department of Biology start-up funds, Center for Protease Research NIH Grant # 2P20 RR015566, NIH NIAMS Grant # R03AR055350, and NDSU Advance FORWARD NSF Grant #HRD-0811239 to PRB. Support was also provided by the UAB Nutrition Obesity Research Center award # P30DK056336, NIH NIDDK | ANR-12-JSV7-0001,RecrutCell,Mécanismes moléculaires de l'engagement des cellules souches musculaires dans la fusion avec un myoblaste ou un myotube chez le poisson(2012)
Preparation of primary myogenic precursor cell/myoblast cultures from basal vertebrate lineages Полный текст
2014
Froehlich, Jacob Michael | Seiliez, Iban | Gabillard, Jean-Charles | Biga, Peggy R. | Department of Biology ; University of Alabama [Birmingham] (UAB) | Nutrition, Aquaculture et Génomique (NUAGE) ; Institut National de la Recherche Agronomique (INRA)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Laboratoire de Physiologie et Génomique des Poissons (LPGP) ; Institut National de la Recherche Agronomique (INRA)-Structure Fédérative de Recherche en Biologie et Santé de Rennes (Biosit : Biologie - Santé - Innovation Technologique) | University of Alabama at Birmingham Department of Biology start-up funds, Center for Protease Research NIH Grant # 2P20 RR015566, NIH NIAMS Grant # R03AR055350, and NDSU Advance FORWARD NSF Grant #HRD-0811239 to PRB. Support was also provided by the UAB Nutrition Obesity Research Center award # P30DK056336, NIH NIDDK | ANR-12-JSV7-0001,RecrutCell,Mécanismes moléculaires de l'engagement des cellules souches musculaires dans la fusion avec un myoblaste ou un myotube chez le poisson(2012)
Watch video article at Jove :http://www.jove.com/ | Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystoma mexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream(1-4).
Показать больше [+] Меньше [-]Preparation of primary myogenic precursor cell/myoblast cultures from basal vertebrate lineages Полный текст
2014
Froehlich, Jacob Michael | Seiliez, Iban | Gabillard, Jean-Charles | Biga, Peggy R.
Due to the inherent difficulty and time involved with studying the myogenic program in vivo, primary culture systems derived from the resident adult stem cells of skeletal muscle, the myogenic precursor cells (MPCs), have proven indispensible to our understanding of mammalian skeletal muscle development and growth. Particularly among the basal taxa of Vertebrata, however, data are limited describing the molecular mechanisms controlling the self-renewal, proliferation, and differentiation of MPCs. Of particular interest are potential mechanisms that underlie the ability of basal vertebrates to undergo considerable postlarval skeletal myofiber hyperplasia (i.e. teleost fish) and full regeneration following appendage loss (i.e. urodele amphibians). Additionally, the use of cultured myoblasts could aid in the understanding of regeneration and the recapitulation of the myogenic program and the differences between them. To this end, we describe in detail a robust and efficient protocol (and variations therein) for isolating and maintaining MPCs and their progeny, myoblasts and immature myotubes, in cell culture as a platform for understanding the evolution of the myogenic program, beginning with the more basal vertebrates. Capitalizing on the model organism status of the zebrafish (Danio rerio), we report on the application of this protocol to small fishes of the cyprinid clade Danioninae. In tandem, this protocol can be utilized to realize a broader comparative approach by isolating MPCs from the Mexican axolotl (Ambystomamexicanum) and even laboratory rodents. This protocol is now widely used in studying myogenesis in several fish species, including rainbow trout, salmon, and sea bream1-4.
Показать больше [+] Меньше [-]Acquisition of high-quality digital video of Drosophila larval and adult behaviors from a lateral perspective Полный текст
2014
Zenger, Beatrix | Wetzel, Sabine | Duncan, Jason
Drosophila melanogaster is a powerful experimental model system for studying the function of the nervous system. Gene mutations that cause dysfunction of the nervous system often produce viable larvae and adults that have locomotion defective phenotypes that are difficult to adequately describe with text or completely represent with a single photographic image. Current modes of scientific publishing, however, support the submission of digital video media as supplemental material to accompany a manuscript. Here we describe a simple and widely accessible microscopy technique for acquiring high-quality digital video of both Drosophila larval and adult phenotypes from a lateral perspective. Video of larval and adult locomotion from a side-view is advantageous because it allows the observation and analysis of subtle distinctions and variations in aberrant locomotive behaviors. We have successfully used the technique to visualize and quantify aberrant crawling behaviors in third instar larvae, in addition to adult mutant phenotypes and behaviors including grooming.
Показать больше [+] Меньше [-]Construction of an affordable and easy-to-build zebrafish facility Полный текст
2014
Paige, Candler | Hill, Bailey | Canterbury, Joseph | Sweitzer, Sarah | Romero-Sandoval, E Alfonso
In vivo biomedical research is pivotal to translate in vitro findings into clinical advances. Small academic institutions with limited resources find it virtually impossible to build and maintain typical rodent facilities for research. Zebrafish research has been demonstrated to be a valuable alternative for in vivo research in pharmacology, physiology, development and genetic studies. This article demonstrates that a functional zebrafish facility can be built in an easy and affordable manner. We demonstrate that such a facility could be built in about one working day with minimal tools and expertise. The cost of the 27 1.8 L fish tank zebrafish facility constructed in this study was approximately $1,500. We estimate that the maintenance of an initial working 150 fish colony for 3 months is $1,000. This project involved students, who were introduced to aquaculturing of zebrafish for research proposes.
Показать больше [+] Меньше [-]Isolation and physiological analysis of mouse cardiomyocytes Полный текст
2014
Roth, Gretchen M. | Bader, David M. | Pfaltzgraff, Elise R.
Cardiomyocytes, the workhorse cell of the heart, contain exquisitely organized cytoskeletal and contractile elements that generate the contractile force used to pump blood. Individual cardiomyocytes were first isolated over 40 years ago in order to better study the physiology and structure of heart muscle. Techniques have rapidly improved to include enzymatic digestion via coronary perfusion. More recently, analyzing the contractility and calcium flux of isolated myocytes has provided a vital tool in the cellular and sub-cellular analysis of heart failure. Echocardiography and EKGs provide information about the heart at an organ level only. Cardiomyocyte cell culture systems exist, but cells lack physiologically essential structures such as organized sarcomeres and t-tubules required for myocyte function within the heart. In the protocol presented here, cardiomyocytes are isolated via Langendorff perfusion. The heart is removed from the mouse, mounted via the aorta to a cannula, perfused with digestion enzymes, and cells are introduced to increasing calcium concentrations. Edge and sarcomere detection software is used to analyze contractility, and a calcium binding fluorescent dye is used to visualize calcium transients of electrically paced cardiomyocytes; increasing understanding of the role cellular changes play in heart dysfunction. Traditionally used to test drug effects on cardiomyocytes, we employ this system to compare myocytes from WT mice and mice with a mutation that causes dilated cardiomyopathy. This protocol is unique in its comparison of live cells from mice with known heart function and known genetics. Many experimental conditions are reliably compared, including genetic or environmental manipulation, infection, drug treatment, and more. Beyond physiologic data, isolated cardiomyocytes are easily fixed and stained for cytoskeletal elements. Isolating cardiomyocytes via perfusion is an extremely versatile method, useful in studying cellular changes that accompany or lead to heart failure in a variety of experimental conditions.
Показать больше [+] Меньше [-]Dnbs/tnbs colitis models: providing insights into inflammatory bowel disease and effects of dietary fat Полный текст
2014
Morampudi, Vijay | Bhinder, Ganive | Wu, Xiujuan | Dai, Chuanbin | Sham, Ho Pan | Vallance, Bruce A. | Jacobson, Kevan
Inflammatory Bowel Diseases (IBD), including Crohn's Disease and Ulcerative Colitis, have long been associated with a genetic basis, and more recently host immune responses to microbial and environmental agents. Dinitrobenzene sulfonic acid (DNBS)-induced colitis allows one to study the pathogenesis of IBD associated environmental triggers such as stress and diet, the effects of potential therapies, and the mechanisms underlying intestinal inflammation and mucosal injury. In this paper, we investigated the effects of dietary n-3 and n-6 fatty acids on the colonic mucosal inflammatory response to DNBS-induced colitis in rats. All rats were fed identical diets with the exception of different types of fatty acids [safflower oil (SO), canola oil (CO), or fish oil (FO)] for three weeks prior to exposure to intrarectal DNBS. Control rats given intrarectal ethanol continued gaining weight over the 5 day study, whereas, DNBS-treated rats fed lipid diets all lost weight with FO and CO fed rats demonstrating significant weight loss by 48 hr and rats fed SO by 72 hr. Weight gain resumed after 72 hr post DNBS, and by 5 days post DNBS, the FO group had a higher body weight than SO or CO groups. Colonic sections collected 5 days post DNBS-treatment showed focal ulceration, crypt destruction, goblet cell depletion, and mucosal infiltration of both acute and chronic inflammatory cells that differed in severity among diet groups. The SO fed group showed the most severe damage followed by the CO, and FO fed groups that showed the mildest degree of tissue injury. Similarly, colonic myeloperoxidase (MPO) activity, a marker of neutrophil activity was significantly higher in SO followed by CO fed rats, with FO fed rats having significantly lower MPO activity. These results demonstrate the use of DNBS-induced colitis, as outlined in this protocol, to determine the impact of diet in the pathogenesis of IBD.
Показать больше [+] Меньше [-]A multi-modal approach to assessing recovery in youth athletes following concussion Полный текст
2014
Reed, Nick | Murphy, James | Dick, Talia | Mah, Katie | Paniccia, Melissa | Verweel, Lee | Dobney, Danielle | Keightley, Michelle
Concussion is one of the most commonly reported injuries amongst children and youth involved in sport participation. Following a concussion, youth can experience a range of short and long term neurobehavioral symptoms (somatic, cognitive and emotional/behavioral) that can have a significant impact on one’s participation in daily activities and pursuits of interest (e.g., school, sports, work, family/social life, etc.). Despite this, there remains a paucity in clinically driven research aimed specifically at exploring concussion within the youth sport population, and more specifically, multi-modal approaches to measuring recovery. This article provides an overview of a novel and multi-modal approach to measuring recovery amongst youth athletes following concussion. The presented approach involves the use of both pre-injury/baseline testing and post-injury/follow-up testing to assess performance across a wide variety of domains (post-concussion symptoms, cognition, balance, strength, agility/motor skills and resting state heart rate variability). The goal of this research is to gain a more objective and accurate understanding of recovery following concussion in youth athletes (ages 10-18 years). Findings from this research can help to inform the development and use of improved approaches to concussion management and rehabilitation specific to the youth sport community.
Показать больше [+] Меньше [-]