Уточнить поиск
Результаты 101-110 из 3,208
Impact of insecticide exposure on the predation activity of the European earwig Forficula auricularia Полный текст
2015
Malagnoux, Laure | Capowiez, Yvan | Rault, Magali | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Abeilles et environnement (AE) ; Institut National de la Recherche Agronomique (INRA) | Unité de recherche Plantes et Systèmes de Culture Horticoles (PSH) ; Institut National de la Recherche Agronomique (INRA) | Provence-Alpes-Cote d'Azur Region (France)
International audience | The European earwig Forficula auricularia is an effective predator in apple orchards. It is therefore crucial to study whether insecticides affect this natural pest control agent. Predation activity, i.e., the number of aphids eaten in 24 h, was determined under laboratory conditions after exposure of fourth-instar nymphs and adult earwigs to widely used insecticides (acetamiprid, chlorpyrifos-ethyl, deltamethrin, and spinosad), which were applied at the normal application rates. Inhibition of acetylcholinesterase and carboxylesterase activities were also measured as indicators of pesticide exposure. Predation activity decreased significantly in nymphs exposed to spinosad (62 %) and chlorpyrifos-ethyl (98 %) compared with controls. A similar response was found for both esterase activities. Spinosad had a stronger effect on AChE (-33 %) whereas chlorpyrifos-ethyl affected CbE activity preferentially (-59 %). Spinosad (20 % of controls), acetamiprid (28 %), and chlorpyrifos-ethyl (66 %) also significantly decreased the predation behavior of adult male but not female (5 to 40 %) earwigs. Adult AChE and CbE activities were also significantly reduced (28 to 67 % of controls) in pesticide-exposed earwigs. Our results suggest that earwigs should be included in the environmental risk assessment framework for authorization of newly marketed plant protection products. Their predation behavior appears to be a sensitive and complementary biomarker.
Показать больше [+] Меньше [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Полный текст
2015
Simon-Delso, N | Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D.W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | Long, E. | Mcfield, M. | Mineau, P. | Mitchell, E.A.D. | Morrissey, C.A. | Noome, D.A. | Pisa, L | Settele, J. | Stark, J. D. | Tapparo, A. | van Dyck, H. | van Praagh, J.P. | van Der Sluijs, J. P. | Whitehorn, P.R. | Wiemers, M. | Universiteit Utrecht / Utrecht University [Utrecht] | Centre Apicole de Recherche et Information ; Partenaires INRAE | Buglife | Abeilles et environnement (AE) ; Institut National de la Recherche Agronomique (INRA) | Centre de biophysique moléculaire (CBM) ; Université d'Orléans (UO)-Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Département des Sciences Biologiques ; Université du Québec à Montréal = University of Québec in Montréal (UQAM) | Haereticus Environmental Laboratory ; Partenaires INRAE | Veneto Agricoltura | Centre for Conservation Science | Department of Chemistry ; University of Cambridge [UK] (CAM) | Università degli Studi di Padova = University of Padua (Unipd) | School of Life Sciences ; University of Sussex | Canadian Forest Service ; Natural Resources Canada (NRCan) | Department of Entomology ; Michigan State University [East Lansing] ; Michigan State University System-Michigan State University System | Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | Smithsonian Institution | Pierre Mineau Consulting ; Partenaires INRAE | Laboratory of Soil Biology ; Université de Neuchâtel = University of Neuchatel (UNINE) | Jardin Botanique de Neuchâtel | University of Saskatchewan [Saskatoon, Canada] (U of S) | Kijani ; Partenaires INRAE | Department of Community Ecology ; Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | German Centre for Integrative Biodiversity Research (iDiv) | Washington State University (WSU) | Université Catholique de Louvain = Catholic University of Louvain (UCL) | Scientific Advisor ; Partenaires INRAE | University of Bergen (UiB) | School of Natural Sciences ; University of Stirling
Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Полный текст
2015
Simon-Delso, N | Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D.W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | Long, E. | Mcfield, M. | Mineau, P. | Mitchell, E.A.D. | Morrissey, C.A. | Noome, D.A. | Pisa, L | Settele, J. | Stark, J. D. | Tapparo, A. | van Dyck, H. | van Praagh, J.P. | van Der Sluijs, J. P. | Whitehorn, P.R. | Wiemers, M. | Universiteit Utrecht / Utrecht University [Utrecht] | Centre Apicole de Recherche et Information ; Partenaires INRAE | Buglife | Abeilles et environnement (AE) ; Institut National de la Recherche Agronomique (INRA) | Centre de biophysique moléculaire (CBM) ; Université d'Orléans (UO)-Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Département des Sciences Biologiques ; Université du Québec à Montréal = University of Québec in Montréal (UQAM) | Haereticus Environmental Laboratory ; Partenaires INRAE | Veneto Agricoltura | Centre for Conservation Science | Department of Chemistry ; University of Cambridge [UK] (CAM) | Università degli Studi di Padova = University of Padua (Unipd) | School of Life Sciences ; University of Sussex | Canadian Forest Service ; Natural Resources Canada (NRCan) | Department of Entomology ; Michigan State University [East Lansing] ; Michigan State University System-Michigan State University System | Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | Smithsonian Institution | Pierre Mineau Consulting ; Partenaires INRAE | Laboratory of Soil Biology ; Université de Neuchâtel = University of Neuchatel (UNINE) | Jardin Botanique de Neuchâtel | University of Saskatchewan [Saskatoon, Canada] (U of S) | Kijani ; Partenaires INRAE | Department of Community Ecology ; Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ) | German Centre for Integrative Biodiversity Research (iDiv) | Washington State University (WSU) | Université Catholique de Louvain = Catholic University of Louvain (UCL) | Scientific Advisor ; Partenaires INRAE | University of Bergen (UiB) | School of Natural Sciences ; University of Stirling
International audience | Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. Awide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Показать больше [+] Меньше [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites | Pesticides néonicotinoïdes. Tendances, usages et modes d’action des métabolites Полный текст
2014
Simon-Delso, N. | Amaral-Rogers, V. | Belzunces, L.P. | Bonmatin, Jean-Marc | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D. W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D. P. | Krupke, C. H. | Liess, M. | Long, E. | Mcfield, M. | Mineau, P. | Mitchell, E. A. D. | Morrissey, C. A. | Noome, D. A. | Pisa, L. | Settele, J. | Stark, J. D. | Tapparo, A. | van Dyck, H. | van Praagh, J. | van Der Sluijs, J. P. | Whitehorn, P. R. | Wiemers, M. | Copernicus Institute of Sustainable Development [Utrecht] ; Universiteit Utrecht / Utrecht University [Utrecht] | Beekeeping Research and Information Center | Buglife | Abeilles et environnement (AE) ; Institut National de la Recherche Agronomique (INRA) | Centre de biophysique moléculaire (CBM) ; Université d'Orléans (UO)-Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)
. | Depuis leur découverte dans les années 1980, les pesticides néonicotinoïdes sont devenus la classe la plus largement utilisée des insecticides, dans le monde entier, avec des applications à grande échelle allant de la protection des plantes (cultures, légumes, fruits), aux produits vétérinaires et aux biocides pour le contrôle des invertébrés parasites en pisciculture. Dans cette revue, nous joignons la fipronil, un phénylpyrazole, aux néonicotinoïdes en raison de la similitude de leur toxicité, des profils physico-chimiques, et de leur présence dans l'environnement. Les néonicotinoïdes et le fipronil représentent actuellement environ un tiers du marché mondial des insecticides ; la production mondiale annuelle de l'archétype des néonicotinoïdes, l'imidaclopride, a été estimée au total à 20 000 tonnes de substance active en 2010. Le succès initial des néonicotinoïdes et du fipronil est dû à plusieurs raisons : (1) il n'y avait pas de résistance connue à ces pesticides chez les ravageurs cibles, principalement en raison de leur développement récent, (2) leurs propriétés physico-chimiques rassemblaient de nombreux avantages par rapport à celles des générations précédentes d’insecticides (c’est-à-dire, les organophosphorés, les carbamates, les pyréthrinoïdes, etc.), et,(3) ils partagent et supposent des risques réduits pour l’opérateur et le consommateur. En raison de leur nature systémique, ils sont absorbés par les racines ou les feuilles et transloqués à toutes les parties de la plante, laquelle, à son tour, est effectivement toxique pour les insectes herbivores. La toxicité persiste pendant une période de temps variable en fonction de la plante, de son stade de croissance, et de la quantité de pesticide appliquée. Une grande variété d'applications sont disponibles, y compris la NON Bonne Pratique Agricole(GAP)prophylactique d’application courante en enrobage de semences. En conséquence de leur utilisation extensive et de leurs propriétés physico-chimiques, ces substances peuvent être trouvés dans tous les compartiments environnementaux, y compris le sol, l'eau et l'air. Les néonicotinoïdes et le fipronil fonctionnent en perturbant la transmission nerveuse dans le système nerveux central des invertébrés.Les néonicotinoïdes imitent l'action des neurotransmetteurs, tandis que le fipronil inhibe les récepteurs neuronaux. Ce faisant, les premiers stimulent en permanence les neurones conduisant finalement les invertébrés cibles à la mort. Comme pratiquement tous les insecticides, ils peuvent également avoir des effets létaux et sublétaux sur les organismes non cibles, y compris les vertébrés prédateurs d'insectes. En outre, une gamme d’effets synergiques avec d'autres facteurs de stress a été documentée. Ici, nous passons en revue de façon extensive leurs voies métaboliques, montrant comment les composés spécifiques et les métabolites communs, lesquels peuvent eux-mêmes être toxiques, forment ensemble deux cas. Ceux-ci peuvent entraîner une toxicité prolongée. Compte tenu de leur large expansion commerciale, leur mode d'action, leurs propriétés systémiques chez les plantes, leur persistance et leur devenir environnemental, couplés avec des informations limitées sur les profils de toxicité de ces composés et de leurs métabolites, les néonicotinoïdes et le fipronil peuvent entraîner des risques importants pour l'environnement. Une évaluation globale des effets collatéraux potentiels de leur utilisation est donc opportune. Le présent document, et les chapitres suivants dans cette revue de la littérature mondiale, explorent ces risques et montrent une quantité croissante de preuves qui, sur la base de la persistance et de faibles concentrations de ces pesticides, posent de sérieux risques d’impacts environnementaux indésirables.
Показать больше [+] Меньше [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Полный текст
2015 | 2014
Simon-Delso, Noa | Amaral-Rogers, Vanessa | Belzunces, Luc P | Bonmatin, Jean-Marc | Chagnon, Madeleine | Downs, Craig | Furlan, Lorenzo | Gibbons, David W | Giorio, Chiara | Girolami, Vincenzo | Goulson, Dave | Kreutzweiser, David P | Krupke, Christian H | Liess, Matthias | Whitehorn, Penelope R | Utrecht University | Buglife | French National Institute for Agricultural Research (INRA) | The National Center for Scientific Research (CNRS) | University of Quebec in Montreal (UQAM) | Haereticus Environmental Laboratory | Veneto Agricoltura | Royal Society for the Protection of Birds (RSPB) | University of Cambridge | University of Padua | University of Sussex | Natural Resources Canada | Purdue University | Helmholtz Centre for Environmental Research-UFZ, Germany | Biological and Environmental Sciences | 0000-0001-9852-1012
Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time-depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts. | Additional co-authors: E. Long, M. McField, P. Mineau, E. A. D. Mitchell, C. A. Morrissey, D. A. Noome, L. Pisa, J. Settele, J. D. Stark, A. Tapparo, H. Van Dyck, J. Van Praagh, J. P. Van der Sluijs, M. Wiemers
Показать больше [+] Меньше [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Полный текст
2015
Amaral-Rogers, V. | Belzunces, Luc | Bonmatin, J-M. | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D.W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D.P. | Krupke, C. | Liess, M. | Long, E. | McField, M. | Mineau, P. | Mitchell, E.A.D. | Morrissey, C.A. | Noome, D.A. | Pisa, L | Settele, J. | Stark, J. D. | Tapparo, A. | Van Dyck, H. | van Praagh, J.P. | Van der Sluijs, J. P. | Whitehorn, P.R. | Wiemers, M.
Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits),veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initialsuccess of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. Awide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neuronsleading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Показать больше [+] Меньше [-]Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites Полный текст
2015
Simon-Delso, N. | Amaral-Rogers, V. | Belzunces, L. P. | Bonmatin, J. M. | Chagnon, M. | Downs, C. | Furlan, L. | Gibbons, D. W. | Giorio, C. | Girolami, V. | Goulson, D. | Kreutzweiser, D. P. | Krupke, C. H. | Liess, M. | Long, E. | McField, M. | Mineau, P. | Mitchell, E. A. D. | Morrissey, C. A. | Noome, D. A. | Pisa, L. | Settele, J. | Stark, J. D. | Tapparo, A. | Van Dyck, H. | Praagh, Jaap van | Van der Sluijs, J. P. | Whitehorn, P. R. | Wiemers, M.
Since their discovery in the late 1980s, neonicotinoid pesticides have become the most widely used class of insecticides worldwide, with large-scale applications ranging from plant protection (crops, vegetables, fruits), veterinary products, and biocides to invertebrate pest control in fish farming. In this review, we address the phenyl-pyrazole fipronil together with neonicotinoids because of similarities in their toxicity, physicochemical profiles, and presence in the environment. Neonicotinoids and fipronil currently account for approximately one third of the world insecticide market; the annual world production of the archetype neonicotinoid, imidacloprid, was estimated to be ca. 20,000 tonnes active substance in 2010. There were several reasons for the initial success of neonicotinoids and fipronil: (1) there was no known pesticide resistance in target pests, mainly because of their recent development, (2) their physicochemical properties included many advantages over previous generations of insecticides (i.e., organophosphates, carbamates, pyrethroids, etc.), and (3) they shared an assumed reduced operator and consumer risk. Due to their systemic nature, they are taken up by the roots or leaves and translocated to all parts of the plant, which, in turn, makes them effectively toxic to herbivorous insects. The toxicity persists for a variable period of time—depending on the plant, its growth stage, and the amount of pesticide applied. A wide variety of applications are available, including the most common prophylactic non-Good Agricultural Practices (GAP) application by seed coating. As a result of their extensive use and physicochemical properties, these substances can be found in all environmental compartments including soil, water, and air. Neonicotinoids and fipronil operate by disrupting neural transmission in the central nervous system of invertebrates. Neonicotinoids mimic the action of neurotransmitters, while fipronil inhibits neuronal receptors. In doing so, they continuously stimulate neurons leading ultimately to death of target invertebrates. Like virtually all insecticides, they can also have lethal and sublethal impacts on non-target organisms, including insect predators and vertebrates. Furthermore, a range of synergistic effects with other stressors have been documented. Here, we review extensively their metabolic pathways, showing how they form both compound-specific and common metabolites which can themselves be toxic. These may result in prolonged toxicity. Considering their wide commercial expansion, mode of action, the systemic properties in plants, persistence and environmental fate, coupled with limited information about the toxicity profiles of these compounds and their metabolites, neonicotinoids and fipronil may entail significant risks to the environment. A global evaluation of the potential collateral effects of their use is therefore timely. The present paper and subsequent chapters in this review of the global literature explore these risks and show a growing body of evidence that persistent, low concentrations of these insecticides pose serious risks of undesirable environmental impacts.
Показать больше [+] Меньше [-]Effects of wind wave turbulence on the phytoplankton community composition in large, shallow Lake Taihu Полный текст
2015
Zhou, Jian | Qin, Boqiang | Casenave, Céline | Han, Xiaoxia | Yang, Guijun | Wu, Tingfeng | Wu, Pan | Ma, Jianrong | University of Chinese Academy of Sciences [Beijing] (UCAS) ; Chinese Academy of Sciences [Beijing] (CAS) | State Key Laboratory of Lake Science and Environment ; Nanjing Institute of Geography and Limnology | Nanjing Institute of Geography and Limnology (Niglas) ; Chinese Academy of Sciences [Beijing] (CAS) | Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie (MISTEA) ; Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | College of Resources and Environmental Sciences (CRES) ; Nanjing Agricultural University (NAU) | School of Environmental and Civil Engineering [Wuxi] ; Jiangnan University | Key Laboratory of Reservoir Aquatic Environment ; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences (CIGIT) | National Science Foundation of China : 41230744, 41471021 ; Water Pollution Control and Management Project : 2012ZX07503-002 | European Project: 267196,EC:FP7:PEOPLE,FP7-PEOPLE-2010-COFUND,AGREENSKILLS(2012)
hal-01150611 | International audience | Wind waves are responsible for some of the spatio-temporal gradients observed in the biotic and abiotic variables in large shallow lakes. However, their effects on the phytoplankton community composition are still largely unexplored especially in freshwater systems such as lakes. In this paper, using field observations and mesocosm bioassay experiments, we investigated the impact of turbulence generated by wind waves on the phytoplankton community composition (especially on harmful cyanobacteria) in Lake Taihu, a large, shallow eutrophic lake in China. The composition of the phytoplankton community varied with the intensity of wind waves in the different areas of the lake. During summer, when wind waves were strong in the central lake, diatoms and green algae seemed to dominate while harmful cyanobacteria dominated in the weakly influenced Meiliang Bay. Turbulence bioassays also showed that diatoms and green algae were favoured by turbulent mixing. The critical time for the shift of the phytoplankton community composition was approximately 10 days under turbulent conditions. However, short-term (6 days) turbulence is rather beneficial for the dominance of cyanobacteria. This study suggests that the duration of wind events and their associated hydrodynamics are key factors to understanding the temporal and spatial changes of phytoplankton communities.
Показать больше [+] Меньше [-]Development and applications of a DNA labeling method with magnetic nanoparticles to study the role of horizontal gene transfer events between bacteria in soil pollutant bioremediation processes Полный текст
2015
Pivetal, Jérémy | Frénéa-Robin, Marie | Haddour, Naoufel | Vézy, C. | Zanini, L.-F. | Ciuta, Georgeta | Dempsey, Nora | Dumas-Bouchiat, Frédéric | Reyne, Gilbert | Bégin-Colin, Sylvie | Felder-Flesh, Delphine | Ghobril, C. | Pourroy, Geneviève | Simonet, Pascal | Ampère, Département Bioingénierie (BioIng) ; Ampère (AMPERE) ; École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Micro et NanoMagnétisme (NEEL - MNM) ; Institut Néel (NEEL) ; Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Génie Electrique de Grenoble (G2ELab) ; Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS) | Science des Procédés Céramiques et de Traitements de Surface (SPCTS) ; Université de Limoges (UNILIM)-Ecole Nationale Supérieure de Céramique Industrielle (ENSCI)-Institut des Procédés Appliqués aux Matériaux (IPAM) ; Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) ; Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE) ; Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique ; Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS) | CNRS and Cemagref interdisciplinary Ecological engineering program 2009 (“Nanogénomique” project) | ANR-09-CESA-0013,EMERGENT,Développement et application d'une méthode de marquage de l'ADN par des nanoparticules magnétiques pour définir le rôle des transferts horizontaux de gènes entre bactéries dans les processus de bio-atténuation des polluants du sol,(2009)
International audience | Horizontal gene transfers are critical mechanisms of bacterial evolution and adaptation that are involved to a significant level in the degradation of toxic molecules such as xenobiotic pesticides. However, understanding how these mechanisms are regulated in situ and how they could be used by man to increase the degradation potential of soil microbes is compromised by conceptual and technical limitations. This includes the physical and chemical complexity and heterogeneity in such environments leading to an extreme bacterial taxonomical diversity and a strong redundancy of genes and functions. In addition, more than 99 % of soil bacteria fail to develop colonies in vitro, and even new DNA-based investigation methods (metagenomics) are not specific and sensitive enough to consider lysis recalcitrant bacteria and those belonging to the rare biosphere. The objective of the ANR funded project “Emergent” was to develop a new culture independent approach to monitor gene transfer among soil bacteria by labeling plasmid DNA with magnetic nanoparticles in order to specifically capture and isolate recombinant cells using magnetic microfluidic devices. We showed the feasibility of the approach by using electrotransformation to transform a suspension of Escherichia coli cells with biotin-functionalized plasmid DNA molecules linked to streptavidin-coated superparamagnetic nanoparticles. Our results have demonstrated that magnetically labeled cells could be specifically retained on micromagnets integrated in a microfluidic channel and that an efficient selective separation can be achieved with the microfluidic device. Altogether, the project offers a promising alternative to traditional culture-based approaches for deciphering the extent of horizontal gene transfer events mediated by electro or natural genetic transformation mechanisms in complex environments such as soil.
Показать больше [+] Меньше [-]Nitrite accumulation during denitrification depends on the carbon quality and quantity in wastewater treatment with biofilters. Полный текст
2015
Rocher, Vincent | Laverman, Anniet M. | Gasperi, Johnny | Azimi, Sam | Guérin, Sabrina | Mottelet, Stéphane | Villières, Thierry | Pauss, André | Laboratoire Eau, Environnement et Systèmes Urbains (LEESU) ; AgroParisTech-Université Paris-Est Marne-la-Vallée (UPEM)-École nationale des ponts et chaussées (ENPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12) | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Centre d'Enseignement et de Recherche Eau Ville Environnement (CEREVE) ; AgroParisTech-École nationale des ponts et chaussées (ENPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12) | Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB) ; Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Mathématiques Appliquées de Compiègne (LMAC) ; Université de Technologie de Compiègne (UTC) | Transformations Intégrées de la Matière Renouvelable (TIMR) ; Université de Technologie de Compiègne (UTC)
International audience | This study aims to understand the mechanisms of nitrite appearance during wastewater denitrification by biofilters, focusing on the role of the carbon source. Experiments were carried out at lab-scale (batch tests) and full-scale plant (Parisian plant, capacities of 240,000 m3 day−1). Results showed that the nature of the carbon source affects nitrite accumulation rates. This accumulation is low, 0.05 to 0.10 g N-NO2 − per g N-NO3 − eliminated, for alcohols such as methanol, ethanol, or glycerol. The utilization of glycerol leads to fungal development causing clogging of the biofilters. This fungal growth and consequent clogging exclude this carbon source, with little nitrite accumulation, as carbon source for denitrification. Whatever the carbon source, the C/N ratio in the biofilter plays a major role in the appearance of residual nitrite; an optimal C/N ratio from 3.0 to 3.2 allows a complete denitrification without any nitrite accumulation.
Показать больше [+] Меньше [-]Is the toxicity of pesticide mixtures on river biofilm accounted for solely by the major compounds identified? Полный текст
2015
Kim Tiam, Sandra | Morin, Soizic | Bonet, B. | Guasch, H. | Feurtet-Mazel, Agnès | Eon, Mélissa | Gonzalez, Patrice | Mazzella, Nicolas | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Universitat de Girona = University of Girona (UdG)
Is the toxicity of pesticide mixtures on river biofilm accounted for solely by the major compounds identified? Полный текст
2015
Kim Tiam, Sandra | Morin, Soizic | Bonet, B. | Guasch, H. | Feurtet-Mazel, Agnès | Eon, Mélissa | Gonzalez, Patrice | Mazzella, Nicolas | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Universitat de Girona = University of Girona (UdG)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]BELCA | International audience | The study aimed to characterize the effects of long-term and low-dose exposure to pesticides on natural biofilm communities and to evaluate if the effects due to PE exposure could be explained solely by the major compounds identified in the extracts.
Показать больше [+] Меньше [-]Is the toxicity of pesticide mixtures on river biofilm accounted for solely by the major compounds identified? Полный текст
2015
Kim Tiam, Sandra | Morin, Soizic | Bonet, Berta | Guasch, Helena | Feurtet-Mazel, Agnès | Eon, Mélissa | Gonzalez, Patrice | Mazzella, Nicolas
Comparative effects of long-term exposure to Polar Organic Chemical Integrative Sampler (POCIS) extracts (PE) and to a reconstituted mixture based on the major compounds quantified in the PE were evaluated on river biofilm communities. The study aimed to characterize the effects of long-term and low-dose exposure to pesticides on natural biofilm communities and to evaluate if the effects due to PE exposure could be explained solely by the major compounds identified in the extracts. Biofilms from an uncontaminated site were exposed in artificial channels to realistic environmental concentrations using diluted PE, with the 12 major compounds quantified in the extracts (Mix) or with water not containing pesticides (Ctr). Significant differences between biofilms exposed to pesticides or not were observed with regard to diatom density, biomass (dry weight and ash-free dry mass), photosynthetic efficiency (ΦpsII) and antioxidant enzyme activities. After 14 days of exposure to the different treatments, the observed trend towards a decrease of mean diatom cell biovolumes in samples exposed to pesticides was related to the control biofilms’ higher relative abundance of large species like Cocconeis placentula or Amphora copulata and lower relative abundance of small species like Eolimna minima compared to the contaminated ones. Principal component analyses clearly separated contaminated (PE and Mix) from non-contaminated (Ctr) biofilms; on the contrary, the analyses did not reveal separation between biofilms exposed to PE or to the 12 major compounds identified in the extract.
Показать больше [+] Меньше [-]On the occurrence of a widespread contamination by herbicides of coral reef biota in French Polynesia Полный текст
2015
Salvat, Bernard | Roche, Hélène | Ramade, François | Laboratoire d'Excellence CORAIL (LabEX CORAIL) ; Institut de Recherche pour le Développement (IRD)-Université des Antilles et de la Guyane (UAG)-École des hautes études en sciences sociales (EHESS)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de La Réunion (UR)-Université de la Polynésie Française (UPF)-Université de la Nouvelle-Calédonie (UNC)-Institut d'écologie et environnement-Université des Antilles (UA) | Centre de recherches insulaires et observatoire de l'environnement (CRIOBE) ; Université de Perpignan Via Domitia (UPVD)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) | Ecologie Systématique et Evolution (ESE) ; Université Paris-Sud - Paris 11 (UP11)-AgroParisTech-Centre National de la Recherche Scientifique (CNRS)
International audience | Research has been conducted within the framework of the French Initiative for Coral Reefs (IFRECOR) to assess pesticide pollution levels in the coral reef trophic webs in French Polynesia. Unexpected widespread contamination by herbicides was found in algae, fishes and macro-invertebrates located at various levels of the reef trophic web. Concentrations in organisms investigated were for the majority below the lowest observable effect level and do not pose a dietary risk to native population who subsist on these fish. However, the widespread contamination may affect the reef ecosystem in the future as coral symbiotic algae, Symbidinium sp. (Dinophyta) are particularly sensitive to photosystem II herbicides, particularly the substituted urea and triazine derivatives.
Показать больше [+] Меньше [-]Exposure to vancomycin causes a shift in the microbial community structure without affecting nitrate reduction rates in river sediments Полный текст
2015
Laverman, Anniet M. | Cazier, Thibaut | Yan, Chen | Roose-Amsaleg, Céline | Petit, Fabienne | Garnier, Josette | Berthe, Thierry | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Milieux Environnementaux, Transferts et Interactions dans les hydrosystèmes et les Sols (METIS) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) | Morphodynamique Continentale et Côtière (M2C) ; Université de Caen Normandie (UNICAEN) ; Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
International audience | Antibiotics and antibiotic resistance genes have shown to be omnipresent in the environment. In this study, we investigated the effect of vancomycin (VA) on denitrifying bacteria in river sediments of a Waste Water Treatment Plant, receiving both domestic and hospital waste. We exposed these sediments continuously in flow-through reactors to different VA concentrations under denitrifying conditions (nitrate addition and anoxia) in order to determine potential nitrate reduction rates and changes in sedimentary microbial community structures. The presence of VA had no effect on sedimentary nitrate reduction rates at environmental concentrations, whereas a change in bacterial (16S rDNA) and denitrifying (nosZ) community structures was observed (determined by polymerase chain reaction-denaturing gradient gel electrophoresis). The bacterial and denitrifying community structure within the sediment changed upon VA exposure indicating a selection of a non-susceptible VA population.
Показать больше [+] Меньше [-]Oxidative stress and brain mitochondria swelling induced by endosulfan and protective role of quercetin in rat Полный текст
2015
Lakroun, Zhoura | Kebieche, Mohamed | Lahouel, Asma | Zama, Djamila | Desor, Frederique | Soulimani, Rachid | Université Frères Mentouri – Constantine 1 = Constantine 1 – Frères Mentouri University (UMC) | Université Mohammed Seddik Benyahia [Jijel] | University of Jijel (UMSBJ) | Unité de Recherches Animal et Fonctionnalités des Produits Animaux (URAFPA) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL)
International audience | The neurological damages resulted by endosulfan poisoning is not completely elucidated, especially in cellular organelles such as mitochondria. In the present study, the pro-oxidant effect of endosulfan on brain mitochondria was first investigated. Gavages of endosulfan into rats at the dose of 2 mg/kg induced oxidative stress in this organelle since it provokes a significant reduction of catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH) level. In addition, a significant increase in mitochondria swelling and malondialdehyde (MDA) levels were observed in neuronal mitochondria, indicating clearly an intense peroxidation within mitochondria. Second, the protective effect of quercetin (QE) (10 mg/kg) against endosulfan-induced oxidative stress in mitochondria was also assessed. Indeed, the pretreatment of rats with QE protects brain mitochondria from oxidative stress, lipid peroxidation, and mitochondria swelling induced by endosulfan. The activities of antioxidant enzymes and the mitochondrial content of GSH and MDA were returned to control values. Thus, although endosulfan can have neurotoxic effects in brain rats, this toxicity can be prevented by quercetin.
Показать больше [+] Меньше [-]Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils Полный текст
2015
Cébron, Aurélie | Beguiristain, Thierry | Bongoua-Devisme, Jeanne | Denonfoux, Jérémie | Faure, Pierre | Lorgeoux, Catherine | Ouvrard, Stéphanie | Parisot, Nicolas | Peyret, Pierre | Leyval, Corinne | Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC) ; Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Terre et Environnement de Lorraine (OTELo) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | Université Clermont Auvergne [2017-2020] (UCA [2017-2020]) | GeoRessources ; Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire Sols et Environnement (LSE) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL)
International audience | The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the development of PAH-degrading bacteria holding Gram-negative PAH-ring hydroxylating dioxygenase, catechol-1,2-dioxygenase and catechol-2,3-dioxygenase genes. Regarding the total community structure, bacteria closely related to Thiobacillus (beta-Proteobacteria) and Steroidobacter (gamma-Proteobacteria) genera were favoured by wood sawdust amendment. In both soils, plant rhizospheres induced the development of fungi belonging to Ascomycota and related to Alternaria and Fusarium genera. Bacteria closely related to Luteolibacter (Verrucomicrobia) and Microbacterium (Actinobacteria) were favoured in alfalfa and ryegrass rhizosphere.
Показать больше [+] Меньше [-]