Уточнить поиск
Результаты 1001-1010 из 4,938
A spectroscopic and theoretical investigation of interaction mechanisms of tetracycline and polystyrene nanospheres under different conditions Полный текст
2019
Wan, Tian | Lu, Songhua | Cheng, Wen | Ren, Jiehui | Wang, Min | Hu, Baowei | Jia, Ziyi | Li, Ying | Sun, Yubing
Interaction mechanisms of tetracycline (TC, as a typical antibiotic) on polystyrene microsphere (PSs, as a typical nanoplastic) were conducted by the batch, spectroscopic and theoretical techniques. The batch results showed that Na+ and K+ had no obvious effects on TC adsorption towards PSs, whereas Mg2+ significantly inhibited TC adsorption at pH > 5.0 due to its induced aggregations of PSs. The maximum TC adsorption capacity of PSs in the presence of humic acid (50.99 mg/g) was higher than that of PSs (44.77 mg/g) at pH 6.0. The highly effective adsorption was attributed to electrostatic attraction, π-π interaction and hydrophobic effect, which was determined by FT-IR and XPS analysis. According to DFT (density functional theory) calculations, the adsorption energy of TC/TC+ on PSs (1.52 eV) was significantly higher than that of negative TC− (0.57 eV), whereas minimum distance of TC on PSs (3.684 Å) was shorter than that of TC− on PSs (3.988 Å). The results of theoretical calculations indicated that TC was more preferably adsorbed on PSs with more stable configuration compared to TC−. These findings indicated that PSs can be used as a promising adsorbent for immobilization and pre-concentration of TC from aqueous solutions.
Показать больше [+] Меньше [-]Microplastic in wild populations of the omnivorous crab Carcinus aestuarii: A review and a regional-scale test of extraction methods, including microfibres Полный текст
2019
Piarulli, Stefania | Scapinello, Sara | Comandini, Paolo | Magnusson, Kerstin | Granberg, Maria | Wong, Joanne X.W. | Sciutto, Giorgia | Prati, Silvia | Mazzeo, Rocco | Booth, Andy M. | Airoldi, Laura
Microplastic (MP) has become ubiquitous in the marine environment. Its threat to marine organisms has been demonstrated under laboratory conditions, yet studies on wild populations still face methodological difficulties. We reviewed the methods used to separate MP from soft animal tissues and highlighted a lack of standardised methodologies, particularly critical for synthetic microfibres. We further compared enzymatic and a potassium hydroxide (KOH)-based alkaline digestion protocols on wild crabs (Carcinus aestuarii) collected from three coastal lagoons in the north Adriatic Sea and on laboratory-prepared synthetic polyester (PES) of different colour and polypropylene (PP). We compared the cost-effectiveness of the two methods, together with the potential for adverse quantitative or qualitative effects on MP that could alter the capability of the polymers to be recognised via microscopic or spectroscopic techniques. Only 5.5% of the 180 examined crabs contained MP in their gastrointestinal tracts, with a notably high quantitative variability between individuals (from 1 to 117 particles per individual). All MP found was exclusively microfibres, mainly PES, with a mean length (±SE) of 0.5 ± 0.03 mm. The two digestion methods provided comparable estimates on wild crabs and did not cause any visible physical or chemical alterations on laboratory-prepared microfibres treated for up to 4 days. KOH solution was faster and cheaper compared to the enzymatic extraction, involving fewer procedural steps and therefore reducing the risk of airborne contamination. With digestion times longer than 4 days, KOH caused morphological alterations of some of the PES microfibres, which did not occur with the enzymatic digestion. This suggests that KOH is effective for the digestion of small marine invertebrates or biological samples for which shorter digestion time is required, while enzymatic extraction should be considered as alternative for larger organisms or sample sizes requiring longer digestion times.
Показать больше [+] Меньше [-]Occurrence and distribution of neonicotinoid insecticides in surface water and sediment of the Guangzhou section of the Pearl River, South China Полный текст
2019
Yi, Xiaohui | Zhang, Chao | Liu, Hongbin | Wu, Renren | Tian, Di | Ruan, Jujun | Zhang, Tao | Huang, Mingzhi | Ying, Guangguo
Little information is available about the occurrence of neonicotinoid insecticides in surface water and sediment of the metropolitan regions around the rivers in China. Here we investigate the residual level of neonicotinoids in the Guangzhou section of the Pearl River. At least one or two neonicotinoids was detected in each surface water and sediment, and the total amount of neonicotinoids (∑₅neonics) in surface water ranged from 92.6 to 321 ng/L with a geometric mean (GM) of 174 ng/L. Imidacloprid, thiamethoxam and acetamiprid were three frequently detected neonicotinoids (100%) from surface water. As for the sediment, total concentration was varied between 0.40 and 2.59 ng/g dw with a GM of 1.12 ng/g dw, and acetamiprid and thiacloprid were the common sediment neonicotinoids. Western and Front river-route of the Guangzhou section of the Pearl River suffered a higher neonicotinoids contamination than the Rear river-route, resulting from more effluents of WWTPs receiving, and intensive commercial and human activities. Level of residual neonicotinoids in surface water was significantly correlated with the water quality (p < 0.01), especially items of pH, DO and ORP, and nitrogen and phosphorus contaminants. Compared with reports about residual neonicotinoids in water and sediment previously, the metropolitan regions of the Guangzhou could be confronted with a moderate contamination and showed serious ecological threats (even heavier than the Pearl Rivers). Our results will provide valuable data for understanding of neonicotinoids contamination in the Pearl River Delta and be helpful for further assessing environmental risk of neonicotinoids.
Показать больше [+] Меньше [-]miRNAs deregulation in serum of mice is associated with lung cancer related pathway deregulation induced by PM2.5 Полный текст
2019
Ning, Jie | Li, Peiyuan | Zhang, Boyuan | Han, Bin | Su, Xuan | Wang, Qian | Wang, Xiurong | Li, Binghua | Kang, Hui | Zhou, Lixiao | Chu, Chen | Zhang, Ning | Pang, Yaxian | Niu, Yujie | Zhang, Rong
Ambient fine particulate matter (PM2.5) as an environmental pollution has been associated with the lung cancer. However, the mechanism of epigenetics such as miRNAs deregulation between PM2.5-exposure and lung cancer has not been elucidated clearly. Twenty C57BL/6 mice were divided randomly into 2 groups and exposed to the filtered air (FA) and the concentrated air (CA), respectively. The FA mice were exposed to filtered air in chambers with a high-efficient particulate air filter (HEPA-filter), and the CA mice were exposed to concentration ambient PM2.5. The total duration of exposure was performed 6 h per day from December 1st, 2017 to January 27th, 2018. The mice exposed 900.21 μg/m³ PM2.5 for 6 h per day in CA chamber, which was nearly equaled to 225.05 μg/m³ for 24-h calculatingly. After exposure, the serum miRNAs levels were detected by microarray. Genetic and pathological alterations in lung of mice with/without PM2.5 exposure were detected. 38 differential miRNAs in serum of mice were found after PM2.5 exposure for 8 weeks. Among of them, 13 miRNAs related with lung cancer were consistent in serum and lung of mice. The target genes of 13 deregulated miRNAs including CRK, NR2F2, VIM, RASSF1, CCND2, PRKCA, SIRT1, CDK6, MAP3K7, HIF1A, UBE2V2, ATG10, BAX, E2F1, RASSF5 and CTNNB1, could involve in the pathway of lung cancer developing. Compared with the FA group, the significantly increases of histopathological changes, ROS and DNA damage were observed in lung of mice in CA group. Our study suggested that miRNAs in serum could be identified as candidate biomarkers to predict the lung cancer development during early PM2.5 exposure.
Показать больше [+] Меньше [-]Biochar can mitigate methane emissions by improving methanotrophs for prolonged period in fertilized paddy soils Полный текст
2019
Wu, Zhen | Song, Yanfeng | Shen, Haojie | Jiang, Xueyang | Li, Bo | Xiong, Zhengqin
Biochar application to fertilized paddy soils has been recommended as an effective countermeasure to mitigate methane (CH₄) emissions, but its mechanism and effective duration has not yet been adequately elucidated. A laboratory incubation experiment was performed to gain insight into the combined effects of fresh and six-year aged biochar on potential methane oxidation (PMO) in paddy soils with ammonium or nitrate-amendment. Results showed that both ammonium and nitrate were essential for CH₄ oxidation though high ammonium (4 mM) inhibited PMO as compared to low ammonium (1 mM and 2 mM), and that nitrate was better in promoting PMO than ammonium. Moreover, ammonium-amendment promoted type I pmoA, and nitrate-amendment enhanced type II pmoA abundance. Both fresh and aged biochar increased PMO as well as nitrification by enhancing the total, type I and type II methanotrophs as compared to the control. Increased soil PMO with mineral N input in both six-year aged biochar and fresh biochar amendment, indicating that biochar mitigated CH₄ by promoting PMO for prolonged period in fertilized paddy soils.
Показать больше [+] Меньше [-]LDPE microplastic films alter microbial community composition and enzymatic activities in soil Полный текст
2019
Huang, Yi | Zhao, Yanran | Wang, Jie | Zhang, Mengjun | Jia, Weiqian | Qin, Xiao
Concerns regarding microplastic contamination have spread from aquatic environments to terrestrial systems with a growing number of studies have been reported. Notwithstanding, the potential effects on soil ecosystems remain largely unexplored. In this study, the effects of polyethylene microplastics on soil enzymatic activities and the bacterial community were evaluated, and the microbiota colonizing on microplastics were also investigated. Microplastic amendment (2000 fragments per kg soil) significantly increased the urease and catalase activities in soil after 15 days, and no discernible alteration of invertase activities was detected. Results from high-throughput sequencing of 16S rRNA revealed that the alpha diversities (richness, evenness, and diversity) of the microbiota in soil were not obviously changed by the PE amendment, whereas the diversity indexes of microbiota on plastic fragments were significantly lower than those in the control and amended soils. Different taxonomic composition was observed in between the control and amended soils after 90 days of incubation. Bacterial assemblages with distinct community structure colonized the PE microplastics. Additionally, several taxa including plastic-degrading bacteria and pathogens were more abundant on microplastics. Simultaneously, the predicted functional profiles showed that the pathways of amino acid metabolism and xenobiotics biodegradation and metabolism were higher on the microplastics. These results indicated that microplastics in soil, compared with those in aquatic environments, can also act as a distinct microbial habitat, potentially altering the ecological functions of soil ecosystems.
Показать больше [+] Меньше [-]Microplastics' emissions: Microfibers’ detachment from textile garments Полный текст
2019
Belzagui, Francisco | Crespi, Martí | Alvarez, Antonio | Gutiérrez-Bouzán, Carmen | Vilaseca, Mercedes
Microplastics (synthetic polymers <5 mm) have been recently recognized as a big environmental concern, as their ubiquity is an undeniable fact. Their wide variety regarding shapes, sizes, and materials turn them into an intrinsically risky pollutant capable of causing several environmental impacts. Textile microfibers (MF) are a microplastic sub-group. These are mostly shed when a normal laundry of any garment takes place. Special attention has been put onto them, as high concentrations have been found in products for human consumption as shellfish and tap water. However, as there is no consensus on the methodologies to quantify and report the results of MFs detached from textile garments, the degree of similarity between published studies is very low. Hence, the aim of this research was to evaluate the microfibers’ detachment rates of finished garments and to provide a set of comparable units to report the results. These were found to range between 175 and 560 MF/g or 30000–465000 MF/m² of garment. In addition, there was a high correlation between the MF detachment and the textile article superficial density. Finally, our results were compared with a recent paper that estimated the annual mass flow of MFs to the oceans. This previous publication is 30 times higher when related to the mass but 40 times lower if related to the number of MFs.
Показать больше [+] Меньше [-]The hydro-fluctuation belt of the Three Gorges Reservoir: Source or sink of microplastics in the water? Полный текст
2019
Zhang, Kai | Chen, Xianchuan | Xiong, Xiong | Ruan, Yuefei | Zhou, Hane | Wu, Chenxi | Lam, Paul K.S.
Reservoirs can be an important environmental compartment for microplastic pollution. Previous investigations have found that surface waters and sediments in the Three Gorges Reservoir (TGR) have had high microplastic abundance, and the Xiangxi River, which is one of the largest primary tributaries of the TGR, has had much higher microplastic abundance than several marine and freshwater systems in China. A strip of land on the bank of the reservoir area, which is called the hydro-fluctuation belt (HFB), is periodically exposed due to the special hydrodynamic conditions in the TGR. The HFB may be an important source and/or sink of microplastics in TGR. In this study, microplastic occurrence in sediments from the Xiangxi River HFB was investigated to reflect the local microplastic pollution status and to evaluate its potential to serve as a source/sink of microplastics in the TGR. Seven sampling sites were selected, and sediments within the HFB and above the belt were collected in summer when the water level was low. The results showed that the microplastic abundance ranged from 0.55 ± 0.12 × 10³ to 14.58 ± 5.67 × 10³ particles m⁻², which was one to two orders of magnitude higher than that in sediments from the Xiangxi River in our previous study (80–846 particles m⁻²). Statistical analysis revealed that the microplastic abundance within the HFB was significantly higher than that of the area above the HFB. The results indicate that the HFB can be an important microplastic sink when the water level is low, and the belt can turn into a potential source when the water level is high. Cluster analysis was applied to reveal the characteristics of the microplastics collected at different sites, and the results suggest that the cluster analysis may be a useful tool in elucidating the source and fate of microplastics.
Показать больше [+] Меньше [-]Interactive effects of As, Cd and Zn on their uptake and oxidative stress in As-hyperaccumulator Pteris vittata Полный текст
2019
Abid, Rafia | Manzoor, Maria | De Oliveira, Letuzia M. | da Silva, Evandro | Rathinasabapathi, Bala | Rensing, Christopher | Mahmood, Seema | Liu, Xue | Ma, Lena Q.
The effects of arsenic (As), cadmium (Cd) and zinc (Zn) on each other's uptake and oxidative stress in As-hyperaccumulator Pteris vittata were investigated. P. vittata plants were exposed to 50 μM As, Cd and/or Zn for 15 d in 0.2-strength Hoagland solution. When applied alone, P. vittata accumulated 185 mg kg⁻¹ As, 164 mg kg⁻¹ Cd and 327 mg kg⁻¹ Zn in the fronds. While Cd and Zn did not impact each other's uptake, As affected Cd and Zn uptake. Whereas As decreased Zn uptake, Zn affected As speciation in P. vittata fronds, with more arsenate (AsV) than arsenite (AsIII) being present. At 50 μM As, 75 μM Zn increased As accumulation in P. vittata fronds by 10 folds to 2363 mg kg⁻¹ compared to 50 μM Zn. Although AsV was the predominant As species in all tissues, Cd enhanced AsIII levels in the fronds but increased AsV in the roots. Co-exposure of Cd + Zn elevated oxidative stress basing on thiobarbituric acid reactive substances, H₂O₂ content, Evans blue dye uptake, membrane injury index and reactive oxygen species (ROS) relative to single metal. By lowering Cd and Zn concentrations in P. vittata fronds, As reduced the associated stress comparative to Cd or Zn treatment. The results enhance our understanding of the mechanisms underlying the interactions between As, Cd and Zn in As-hyperaccumulator P. vittata.
Показать больше [+] Меньше [-]Source contribution analysis of mercury deposition using an enhanced CALPUFF-Hg in the central Pearl River Delta, China Полный текст
2019
Xu, Hui | Zhu, Yun | Wang, Long | Lin, Che-Jen | Jang, Carey | Zhou, Qin | Yu, Bin | Wang, Shuxiao | Xing, Jia | Yu, Lian
Atmospheric mercury (Hg) poses human health and ecological risks once deposited and bio-accumulated through food chains. Source contribution analysis of Hg deposition is essential to formulating emission control strategies to alleviate the adverse impact of Hg release from anthropogenic sources. In this study, a Hg version of California Puff Dispersion Modeling (denoted as CALPUFF-Hg) system with added Hg environmental processes was implemented to simulate the Hg concentration and deposition in the central region of the Pearl River Delta (cPRD) at 1 km × 1 km resolution. The contributions of eight source sectors to Hg deposition were evaluated. Model results indicated that the emission from cement production was the largest contributor to Hg deposition, accounting for 13.0%, followed by coal-fired power plants (6.5%), non-ferrous metal smelting (5.4%), iron and steel production (3.5%), and municipal solid waste incineration (3.4%). The point sources that released a higher fraction of gaseous oxidized mercury, such as cement production and municipal solid waste incineration, were the most significant contributors to local deposition. In this intensive industrialized region, large point sources contributed 67–94% of total Hg deposition of 6 receptors which were the nearest grid-cells from top five Hg emitters of the domain and the largest municipal solid waste incinerator in Guangzhou. Based on the source apportionment results, cement production and the rapidly growing municipal solid waste incineration are identified as priority sectors for Hg emission control in the cPRD region.
Показать больше [+] Меньше [-]