Уточнить поиск
Результаты 1011-1020 из 5,014
Conditions affecting the release of thorium and uranium from the tailings of a niobium mine Полный текст
2019
Li, Zhizhong | Hadioui, Madjid | Wilkinson, Kevin J.
Determinations of the mobility of metals from tailings is a critical part of any assessment of the environmental impacts of mining activities. The leaching of thorium and uranium from the tailings of different processing stages of a niobium mine was investigated for several pH, ionic strengths and concentrations of natural organic matter (NOM). The pH of the leaching solution did not have a noticeable impact on the extraction of Th, however, for pH values below 4, increased U mobilization was observed. Similarly, only a small fraction of Th (0.05%, ≤15 μg kg⁻¹) and U (1.22%, ≤6 μg kg⁻¹) were mobilized from the tailings in the presence of environmentally relevant concentrations of Ca, Mg or Na. However, in the presence of 10 mg L⁻¹ of fulvic acid, much higher concentrations of ca. 700 μg kg⁻¹ of Th and 35 μg kg⁻¹ of U could be extracted from the tailings. Generally, colloidal forms of Th and dissolved forms of U were mobilized from the tailings, however, in the presence of the fulvic acid, both dissolved and colloidal forms of the two actinides were observed. Single Particle ICP-MS was used to confirm the presence of Th (and U) containing colloids where significant numbers (up to 10⁷ mL⁻¹) of Th and U containing colloids were found, even in 0.2 μm filtered extracts. Although mass equivalent diameters in the range of 6–13 nm Th and 6–9 nm for U could be estimated (based upon the presence of an oxyhydroxide), most of the colloidal mass was attributed to larger (>200 nm) heterocomposite particles.
Показать больше [+] Меньше [-]Seasonal pattern of ammonium 15N natural abundance in precipitation at a rural forested site and implications for NH3 source partitioning Полный текст
2019
Huang, Shaonan | Elliott, Emily M. | Felix, J David | Pan, Yuepeng | Liu, Dongwei | Li, Shanlong | Li, Zhengjie | Zhu, Feifei | Zhang, Na | Fu, Pingqing | Fang, Yunting
Excess ammonia (NH₃) emissions and deposition can have negative effects on air quality and terrestrial ecosystems. Identifying NH₃ sources is a critical step for effectively reducing NH₃ emissions, which are generally unregulated around the world. Stable nitrogen isotopes (δ¹⁵N) of ammonium (NH₄⁺) in precipitation have been directly used to partition NH₃ sources. However, nitrogen isotope fractionation during atmospheric processes from NH₃ sources to sinks has been previously overlooked. Here we measured δ¹⁵NNH₄⁺ in precipitation on a daily basis at a rural forested site in Northeast China over three years to examine its seasonal pattern and attempt to constrain the NH₃ sources. We found that the NH₄⁺ concentrations in precipitation ranged from 5 to 1265 μM, and NH₄⁺ accounted for 65% of the inorganic nitrogen deposition (20.0 kg N ha⁻¹ yr⁻¹) over the study period. The δ¹⁵N values of NH₄⁺ fluctuated from −24.6 to +16.2‰ (average −6.5‰) and showed a repeatable seasonal pattern with higher values in summer (average −2.3‰) than in winter (average −16.4‰), which could not be explained by only the seasonal changes in the NH₃ sources. Our results suggest that in addition to the NH₃ sources, isotope equilibrium fractionation contributed to the seasonal pattern of δ¹⁵NNH₄⁺ in precipitation, and thus, nitrogen isotope fractionation should be considered when partitioning NH₃ sources based on δ¹⁵NNH₄⁺ in precipitation.
Показать больше [+] Меньше [-]Scavenging as a pathway for plastic ingestion by marine animals Полный текст
2019
Andrades, Ryan | dos Santos, Roberta Aguiar | Martins, Agnaldo Silva | Teles, Davi | Santos, Robson Guimarães
Plastic pollution is prevalent worldwide and affects marine wildlife from urbanized beaches to pristine oceanic islands. However, the ecological basis and mechanisms that result in marine animal ingestion of plastic debris are still relatively unknown, despite recent advances. We investigated the relationship between scavenging behavior and plastic ingestion using green turtles, Chelonia mydas, as a model. Diet analysis of C. mydas showed that sea turtles engaging in scavenging behavior ingested significantly more plastic debris than individuals that did not engage in this foraging strategy. We argue that opportunistic scavenging behavior, an adaptive behavior in most marine ecosystems, may now pose a threat to a variety of marine animals due to the current widespread plastic pollution found in oceans.
Показать больше [+] Меньше [-]Organophosphate ester and phthalate ester metabolites in urine from primiparas in Shenzhen, China: Implications for health risks Полный текст
2019
Chen, Yi | Jiang, Lei | Lu, Shaoyou | Kang, Li | Luo, Xianru | Liu, Guihua | Cui, Xinyi | Yu, Yingxin
Organophosphate esters (OPEs) and phthalate esters (PAEs) are extensively used as additives in commercial and household products. However, knowledge on human exposure to OPEs and PAEs remains limited in China. This study aimed to investigate OPE and PAE metabolites in urine samples of primiparas and to evaluate the cumulative risk of OPE and PAE exposure. A total of 8 OPE metabolites and 11 PAE metabolites were measured in urine samples of 84 primiparas from Shenzhen, China. The OPE metabolites were found in at least 72% of the urine samples with bis(2-chloroethyl) phosphate (BCEP) being the dominant analogue. Among the 11 PAE metabolites, mono-n-butyl phthalate (mBP) was the most abundant analogue and had a median concentration (139 μg/L) greater than those reported in urine samples from other countries and regions. A significant, positive correlation was found between Σ₈OPEMs (the sum of 8 OPE metabolites) and body mass index (BMI). The urinary concentration of Σ₁₁PAEMs (the sum of 11 PAE metabolites) was positively associated with the time of computer using by the primiparas. The estimated daily intakes (EDI) of tris(2-chlorethyl) phosphate (TCEP, the parent chemical of BCEP) and di-n-butyl phthalate (DnBP, the parent chemical of mBP) were determined to be 0.47 and 9.14 μg/kg bw/day, respectively. The 95th percentile EDI values for TCEP and DnBP both exceeded their corresponding reference doses. Twelve and fifty-five percentage of the primiparas were estimated to have HIRfD (hazard index corresponding to reference doses) and HITDI (hazard index corresponding to tolerable daily intake) values exceeding 1 for OPEs and PAEs, respectively, suggesting a relatively high exposure risk.
Показать больше [+] Меньше [-]Microplastics in the environment: A critical review of current understanding and identification of future research needs Полный текст
2019
Akdogan, Zeynep | Guven, Basak
Microplastics (plastic particles <5 mm) are a contaminant of increasing ecotoxicological concern in aquatic environments, as well as for human health. Although microplastic pollution is widespread across the land, water, and air, these environments are commonly considered independently; however, in reality are closely linked. This study aims to review the scientific literature related microplastic research in different environmental compartments and to identify the research gaps for the assessment of future research priorities. Over 200 papers involving microplastic pollution, published between 2006 and 2018, are identified in the Web of Science database. The original research articles in ‘Environmental Sciences’, ‘Marine/Freshwater Biology’, ‘Toxicology’, ‘Multidisciplinary Sciences’, ‘Environmental Studies’, ‘Oceanography’, ‘Limnology’ and ‘Ecology’ categories of Web of Science are selected to investigate microplastic research in seas, estuaries, rivers, lakes, soil and atmosphere. The papers identified for seas, estuaries, rivers and lakes are further classified according to (i) occurrence and characterization (ii) uptake by and effects in organisms, and (iii) fate and transport issues. The results reveal that whilst marine microplastics have received substantial scientific research, the extent of microplastic pollution in continental environments, such as rivers, lakes, soil and air, and environmental interactions, remains poorly understood.
Показать больше [+] Меньше [-]Tartaric acid-induced photoreductive dissolution of schwertmannite loaded with As(III) and the release of adsorbed As(III) Полный текст
2019
Zhang, Jian | Li, Wei | Li, Ying | Zhou, Lixiang | Lan, Yeqing
Schwertmannite (SCH) has strong adsorption ability to As(III). However, there are few reports on the stability of SCH load with As(III) (SCH-As(III)). In this study, the effects of tartaric acid (TA), pH and coexisting ions including K+, Ca2+, Al3+ and CO32− on the photoreductive dissolution of SCH- As(III) and the release of the adsorbed As (III) were investigated. The results showed that under UV irradiation TA could greatly enhance the release of total Fe and total As from SCH-As(III). Nevertheless, the total Fe and total As in the solution decreased when TA was consumed up. Compared to SCH, the reductive dissolution of SCH-As(III) was obviously suppressed. In the dark, TA could slowly enhance the dissolution of SCH-As(III), but its effect on the release of adsorbed As(III) was weak. Low pH was conducive to the release of iron and arsenic. Ca2+, K+, and CO32− promoted the decrease of the dissolved total Fe in the later reaction. However, Al3+ inhibited the decrease of the dissolved total Fe and total As. The analyses of FTIR and XRD demonstrated that the mineralogical phase of SCH-As(III) after reaction changed. With light, the dissolved total Fe and total As existed mainly as Fe(II) and As(V), respectively. This is because Fe(II) was generated via ligand to metal charge transfer and As(III) was oxidized to As(V) by ·OH produced during the reaction. Thus, this study provides us with a comprehensive understanding of the stability of SCH-As(III) and the release of adsorbed As(III) in natural environments.
Показать больше [+] Меньше [-]An integrated approach using AHP and DEMATEL for evaluating climate change mitigation strategies of the Indian cement manufacturing industry Полный текст
2019
Balsara, Sachin | Jain, Pramod Kumar | Ramesh, Anbanandam
Concrete, a cement-based product is the highest manufactured and second highest consumed product after water on earth. Across the world, production of cement is the most energy and emission intensive industry hence, the cement industry is currently under pressure to reduce greenhouse gases emissions (GHGEs). However, reducing the GHGEs of the cement industry especially for developing country like India is not an easy task. Cement manufacturing industry needs to focus on significant climate change mitigation strategies to reduce the GHGEs to sustain its production. This study aims at identifying significant climate change mitigation strategies of the cement manufacturing industry in the context of India. Extant literature review and expert opinion are used to identify climate change mitigation strategies of the cement manufacturing industry. In the present study, a model projects by applying both AHP and DEMATEL techniques to assess the climate change mitigation strategies of the cement industry. The AHP technique help in establishing the priorities of climate change mitigation strategies, while the DEMATEL technique forms the causal relationships among them. Through AHP, the results of this research demonstrate that Fuel emission reduction is on top most priority while the relative importance priority of the main remaining factors is Process emission reduction - Electric energy-related emission - Emission avoidance and reduction - Management mitigation measures. The findings also indicate that the main factors, Process emission reduction, and Fuel emission reduction are categorized in cause group factors, while the remaining factors, Electric energy-related emission, Emission avoidance and reduction and Management mitigation measures are in effect group factors. Present model will help supply chain analysts to develop both short-term and long-term decisive measures for effectively managing and reducing GHGEs.
Показать больше [+] Меньше [-]Prenatal aluminum exposure is associated with increased newborn mitochondrial DNA copy number Полный текст
2019
Liu, Bingqing | Song, Lulu | Zhang, Lina | Wu, Mingyang | Wang, Lulin | Cao, Zhongqiang | Zhang, Bin | Xu, Shunqing | Wang, Youjie
Aluminum is a widely distributed metal that has been reported to have embryotoxicity and fetotoxicity in animal studies. However, there has been no study of the association between prenatal aluminum exposure and newborn mitochondrial DNA copy number (mtDNAcn). We aimed to investigate the effect of prenatal aluminum exposure on newborn mtDNAcn. A total of 762 mother-newborn pairs were recruited between November 2013 and March 2015 in Wuhan city, China. We measured maternal urinary aluminum concentrations at three trimesters of pregnancy. Relative mtDNAcn was measured in DNA extracted from umbilical cord blood samples. We used generalized estimating equations to assess the relationship between prenatal aluminum exposure and newborn mtDNAcn. The geometric means of creatinine corrected aluminum concentrations were 31.0 μg/g Cr (95% CI: 27.6, 34.7), 40.9 μg/g Cr (95% CI: 35.7, 46.8) and 58.4 μg/g Cr (95% CI: 51.2, 67.4) for the first, second and third trimesters, respectively. After adjustment for potential confounding factors, a doubling of maternal urinary aluminum concentrations during the second and third trimesters was related to 3.16% (95% CI: 0.88, 5.49) and 4.20% (95% CI: 1.64, 6.81) increases in newborn mtDNAcn, respectively, while the association between maternal urinary aluminum concentration during the first trimester and newborn mtDNAcn was not significant (percent difference: 0.70%, 95% CI: −2.25, 3.73). Prenatal aluminum exposure during the second and third trimesters was positively associated with newborn mtDNAcn. Further studies are essential to elucidate on the potential health consequences of newborn mtDNAcn.
Показать больше [+] Меньше [-]Enhancement of aqueous sulfate formation by the coexistence of NO2/NH3 under high ionic strengths in aerosol water Полный текст
2019
Chen, Tianzeng | Chu, Biwu | Ge, Yanli | Zhang, Shuping | Ma, Qingxin | He, Hong | Li, Shao-Meng
Current air quality models usually underestimate the concentration of ambient air sulfate, but the cause of this underestimation remains unclear. One reason for the underestimation is that the sulfate formation mechanism in the models is incomplete, and does not adequately consider the impact of the synergistic effects of high concentrations of multiple pollutants on sulfate formation. In this work, the roles of gaseous NO₂, NH₃ and solution ionic strength in the formation of sulfate in the aqueous phase were quantitatively investigated using a glass reactor and a 30 m³ smog chamber, separately. The results showed that sulfate formation was enhanced to different degrees in the presence of gas-phase NO₂, NH₃ and their coexistence as solutes in both liquid solution and aerosol water. NH₃ enhances the aqueous oxidation of SO₂ by NO₂ mainly by accelerating the uptake of SO₂ through increased solubility. More importantly, we found that high ionic strength in aerosol water could significantly accelerate the aqueous oxidation of SO₂, resulting in unexpectedly high S(VI) formation rates. We estimate that under severe haze conditions, heterogeneous oxidation of SO₂ by NO₂ on aerosols may be much shorter than that through gas phase oxidation by OH, aided by high ionic strengths in aerosols. Considering the existence of complex air pollution conditions with high concentrations of NO₂, NH₃ and aerosol water, as expected in typical urban and suburban settings, the sulfate formation mechanisms revealed in the present work should be incorporated into air quality models to improve the prediction of sulfate concentrations.
Показать больше [+] Меньше [-]Association between urinary concentration of phthalate metabolites and impaired renal function in Shanghai adults Полный текст
2019
Chen, Jingsi | Zhou, Xiaofeng | Zhang, Han | Liu, Yueming | Cao, Chen | Dong, Ruihua | Yuan, Yaqun | Wang, Min | Lu, Yuanan | Wu, Min | Li, Shuguang | Chen, Bo
Exposure to phthalates is reported to be associated with increased incidence of microalbuminuria and low-grade albuminuria in children and adolescents. However, this phenomenon of phthalate-related nephrotoxicity is unknown in adults.Urine samples of 1663 adults from the 2012 Shanghai Food Consumption Survey (SHFCS) were measured for 10 metabolites of 6 phthalates and for renal function parameters. Their associations were explored by linear and logistic regression models.Multivariate linear regression analysis showed that all three renal function parameters (albumin-to-creatinine ratio (ACR), β2-microglobulin (B2M), and N-acetyl-β-d-glucosaminidase (NAG)) are positively associated with six metabolites, including mono-benzylphthalate (MBzP), mono-2-ethylhexylphthalate (MEHP), mono-2-ethyl-5-oxohexyphthalate (MEOHP), mono-2-ethyl-5-hydroxyhexylphthalate (MEHHP), mono-2-ethyl-5-carboxypentylphthalate (MECPP), and mono-2-carboxymethyl-hexyl phthalate (MCMHP) (P < 0.05). Logistic analysis showed that the prevalence of hyperALBuria, hyperB2Muria, hyperNAGuria, or potentially impaired renal function (PIRF) were positively associated with urinary levels of MBzP, MEOHP, and MECPP, respectively (P < 0.05). Co-exposure to identified risk metabolites monoethylphthalate (MEP), MBzP, MEHP, MEOHP, MECPP, MEHHP, and MCMHP increased the risk of having impaired renal function.Certain metabolites of phthalates, including bis (2-ethylhexyl) phthalate (DEHP) and benzyle butyl phthalate (BBzP), were associated with impaired renal function in Shanghai adults.
Показать больше [+] Меньше [-]