Уточнить поиск
Результаты 1151-1160 из 5,149
Analysis of the relationships between environmental noise and urban morphology Полный текст
2018
Han, Xiaopeng | Huang, Xin | Liang, Hong | Ma, Song | Gong, Jianya
Understanding the effects of urban morphology on urban environmental noise (UEN) at a regional scale is crucial for creating a pleasant urban acoustic environment. This study seeks to investigate how the urban morphology influences the UEN in the Shenzhen metropolitan region of China, by employing remote sensing and geographic information data. The UEN in this study consists of not only regional environmental noise (RN), but also traffic noise (TN). The experimental results reveal the following findings: 1) RN is positively correlated with the nighttime light intensity (NTL) and land surface temperature (LST) (p < 0.05). More interestingly, landscape composition and configuration can also significantly affect RN. For instance, urban vegetation can mitigate the RN (r = −0.411, p < 0.01). There is a reduced RN effect when fewer buildings exist in an urban landscape, in terms of the positive relationship between building density and RN (r = 0.188, p < 0.01). Given the same percentage of building area, buildings are more effective at reducing noise when they are distributed across the urban scenes, rather than being spatially concentrated (r = −0.205, p < 0.01). 2) TN positively relates to large (r = 0.520, p < 0.01) and small–medium (r = 0.508, p < 0.01) vehicle flow. In addition, vegetation along or near roads can alleviate the TN effect (r = −0.342, p < 0.01). TN can also become more severe in urban landscapes where there is higher road density (r = 0.307, p < 0.01). 3) Concerning the urban functional zones, traffic land is the greatest contributor to urban RN, followed by mixed residential and commercial land. The findings revealed by this research will indicate how to mitigate UEN.
Показать больше [+] Меньше [-]Source apportionment of secondary organic aerosol in China using a regional source-oriented chemical transport model and two emission inventories Полный текст
2018
Wang, Peng | Ying, Qi | Zhang, Hongliang | Hu, Jianlin | Lin, Yingchao | Mao, Hongjun
A Community Multiscale Air Quality (CMAQ) model with source-oriented lumped SAPRC-11 (S11L) photochemical mechanism and secondary organic aerosol (SOA) module was applied to determine the contributions of anthropogenic and biogenic sources to SOA concentrations in China. A one-year simulation of 2013 using the Multi-resolution Emission Inventory for China (MEIC) shows that summer SOA are generally higher (10–15 μg m−3) due to large contributions of biogenic (country average 60%) and industrial sources (17%). In winter, SOA formation was mostly due to anthropogenic emissions from industries (40%) and residential sources (38%). Emissions from other countries in southeast China account for approximately 14% of the SOA in both summer and winter, and 46% in spring due to elevated open biomass burning in southeast Asia. The Regional Emission inventory in ASia v2.1 (REAS2) was applied in this study for January and August 2013. Two sets of simulations with the REAS2 inventory were conducted using two different methods to speciate total non-methane carbon into model species. One approach uses total non-methane hydrocarbon (NMHC) emissions and representative speciation profiles from the SPECIATE database. The other approach retains the REAS2 speciated species that can be directly mapped to S11L model species and uses source specific splitting factors to map other REAS2 lumped NMHC species. Biogenic emissions are still the most significant contributor in summer based on these two sets of simulations. However, contributions from the transportation sector to SOA in January are predicted to be much more important based on the two REAS2 emission inventories (∼30–40% vs. ∼5% by MEIC), and contributions from residential sources according to REAS2 was much lower (∼21–24% vs. ∼42%). These discrepancies in source contributions to SOA need to be further investigated as the country seeks for optimal emission control strategies to fight severe air pollution.
Показать больше [+] Меньше [-]Microcystin-LR affects the hypothalamic-pituitary-inter-renal (HPI) axis in early life stages (embryos and larvae) of zebrafish Полный текст
2018
Ma, Yukun | Wang, Yeke | Giesy, John P. | Chen, Feng | Shi, Ting | Chen, Jun | Xie, Ping
Frequencies and durations of blooms of cyanobacteria are increasing. Some cyanobacteria can produce cyanotoxins including microcystins (MCs). MCs are the most common toxic products of hazardous algal blooms (HABs), with the greatest potential for exposure and to cause toxicity. Recently, MCs have been shown to disrupt endocrine functions. In this study, for the first time, effects of MC-LR on the hypothalamic-pituitary-inter-renal (HPI) axis during early embryonic development (embryos/larvae) of zebrafish (Danio rerio), were investigated. Embryos/larvae of zebrafish were exposed to 1, 10, 100, or 300 μg MC-LR/L during the period of 4–168 h post-fertilization (hpf). Exposure to 300 μg MC-LR/L resulted in significantly greater concentrations of whole-body cortisol than those in controls. Expressions of genes along the HPI axis and mineralocorticoid receptor (MR-) and glucocorticoid receptor (GR-) centered gene networks were evaluated by use of quantitative real-time PCR. Expression of mRNA for crh was significantly down-regulated by exposure to 300 μg MC-LR/L, while expressions of crhbp, crhr1, and crhr2 were significantly up-regulated, relative to controls. MC-LR caused significantly lesser levels of mRNA for steroidogenic genes including hmgra, star, and cyp17, but expression of mRNA for hsd20b was significantly greater than that of controls. Treatment with MC-LR also altered profiles of transcription of MR- and GR-centered gene networks, which might result in multiple responses. Taken together, these results demonstrated that MC-LR affected the corticosteroid-endocrine system of larvae of zebrafish. This study provided valuable insights into molecular mechanisms behind potential toxicity and endocrine disruption of MCs.
Показать больше [+] Меньше [-]Chronic radiation exposure as an ecological factor: Hypermethylation and genetic differentiation in irradiated Scots pine populations Полный текст
2018
Volkova, P.Yu | Geras'kin, S.A. | Horemans, N. | Makarenko, E.S. | Saenen, E. | Duarte, G.T. | Nauts, R. | Bondarenko, V.S. | Jacobs, G. | Voorspoels, S. | Kudin, M.
Genetic and epigenetic changes were investigated in chronically irradiated Scots pine (Pinus sylvestris L.) populations from territories that were heavily contaminated by radionuclides as result of the Chernobyl Nuclear Power Plant accident. In comparison to the reference site, the genetic diversity revealed by electrophoretic mobility of AFLPs was found to be significantly higher at the radioactively contaminated areas. In addition, the genome of pine trees was significantly hypermethylated at 4 of the 7 affected sites.
Показать больше [+] Меньше [-]Targeted inactivation of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa in a soil-lettuce system by combined polyvalent bacteriophage and biochar treatment Полный текст
2018
Ye, Mao | Sun, Mingming | Zhao, Yuanchao | Jiao, Wentao | Xia, Bing | Liu, Manqiang | Feng, Yanfang | Zhang, Zhongyun | Huang, Dan | Huang, Rong | Wan, Jinzhong | Du, Ruijun | Jiang, Xin | Hu, Feng
High abundances of antibiotic-resistant pathogenic bacteria (ARPB) and antibiotic resistance genes (ARGs) in agricultural soil-plant systems have become serious threats to human health and environmental safety. Therefore, it is crucial to develop targeted technology to control existing antibiotic resistance (AR) contamination and potential dissemination in soil-plant systems. In this work, polyvalent bacteriophage (phage) therapy and biochar amendment were applied separately and in combination to stimulate ARPB/ARG dissipation in a soil-lettuce system. With combined application of biochar and polyvalent phage, the abundance of Escherichia coli K-12 (tetR) and Pseudomonas aeruginosa PAO1 (ampR + fosR) and their corresponding ARGs (tetM, tetQ, tetW, ampC, and fosA) significantly decreased in the soil after 63 days' incubation (p < 0.05). Similar results for endophytic K-12 and PAO1, and ARGs, were also obtained in lettuce tissues following combined treatment. Additionally, high throughput sequencing revealed that biochar and polyvalent phage synergetically improved the structural diversity and functional stability of the indigenous bacterial communities in soil and the endophytic ones in lettuce. Hence, this work proposes a novel biotechnology that combines biochar amendment and polyvalent phage therapy to achieve targeted inactivation of ARPB, which stimulates ARG dissipation in soil-lettuce systems.
Показать больше [+] Меньше [-]Experimental addition of nitrogen to a whole forest ecosystem at Gårdsjön, Sweden (NITREX): Nitrate leaching during 26 years of treatment Полный текст
2018
Moldan, Filip | Jutterström, Sara E.A-K. | Hruška, Jakub | Wright, Richard F.
Chronic high deposition of nitrogen (N) to forest ecosystems can lead to increased leaching of inorganic N to surface waters, enhancing acidification and eutrophication. For 26 years nitrogen has been added as ammonium nitrate (NH₄NO₃) at 40 kg N ha⁻¹ yr⁻¹ to a whole forested catchment ecosystem at Gårdsjön, Sweden, to experimentally simulate the transition from a N-limited to N-rich state. Over the first 10 years of treatment there was an increasing amount of nitrate (NO₃⁻) and to a lesser extent ammonium (NH₄⁺) lost in runoff, but then N leaching stabilised, and for the subsequent 16 years the fraction of N added lost in runoff remained at 9%. NO₃⁻ concentrations in runoff were low in the summer during the first years of treatment, but now are high throughout the year. High frequency sampling showed that peaks in NO₃⁻ concentrations generally occurred with high discharge, and were enhanced if high discharge coincided with occasions of N addition. Approximately 50% of the added N has gone to the soil. The added N is equivalent to 140 years of ambient N deposition. At current ambient levels of N deposition there thus appears to be no immediate risk of N saturation at this coniferous forest ecosystem, and by inference to other such N-limited forests in Scandinavia.
Показать больше [+] Меньше [-]De- icing salt contamination reduces urban tree performance in structural soil cells Полный текст
2018
Ordóñez Barona, Camilo | Sabetski, Vadim | Millward, Andrew A. | Steenberg, James
Salts used for de-icing roads and sidewalks in northern climates can have a significant impact on water quality and vegetation. Sub-surface engineering systems, such as structural soil cells, can regulate water runoff and pollutants, and provide the necessary soil volume and irrigation to grow trees. However, the ability of such systems to manage de-icing salt contamination, and the impact of this contamination on the trees growing in them, have not been evaluated. We report on an field investigation of de-icing salt contamination in structural cells in two street-revitalization projects in Toronto, Canada, and the impact of this contamination on tree performance. We analyzed soil chemistry and collected tree attributes; these data were examined together to understand the effect of salinity on tree mortality rates and foliar condition. Data collected from continuous soil salinity loggers from April to June for one of the two sites were used to determine whether there was a long-term accumulation of salts in the soils. Results for both sites indicate that both sites displayed high salinity and alkalinity, with levels elevated beyond those suggested before those reported to cause negative tree effects. For one site, trees that were alive and trees that had a better foliar condition had significantly lower levels of soil salinity and alkalinity than other trees. High salinity and alkalinity in the soil were also associated with lower nutrient levels for both sites. Although tests for salinity accumulation in the soils of one site were negative, a longer monitoring of the soil conditions within the soil cells is warranted. Despite structural cells being increasingly utilized for their dual role in storm-water management and tree establishment, there may be a considerable trade-off between storm-water management and urban-forest function in northern climates where de-icing salt application continues to be commonplace.
Показать больше [+] Меньше [-]Historical legacies of river pollution reconstructed from fish scales Полный текст
2018
Morán, Paloma | Cal, Laura | Cobelo-García, Antonio | Almécija, Clara | Caballero, Pablo | Garcia de Leaniz, Carlos
Historical legacies of river pollution reconstructed from fish scales Полный текст
2018
Morán, Paloma | Cal, Laura | Cobelo-García, Antonio | Almécija, Clara | Caballero, Pablo | Garcia de Leaniz, Carlos
Many rivers have been impacted by heavy metal pollution in the past but the long-term legacies on biodiversity are difficult to estimate. The River Ulla (NW Spain) was impacted by tailings from a copper mine during the 1970–1980s but absence of baseline values and lack of subsequent monitoring have prevented a full impact assessment. We used archived fish scales of Atlantic salmon to reconstruct levels of historical copper pollution and its effects on salmon fitness. Copper bioaccumulation significantly increased over baseline values during the operation of the mine, reaching sublethal levels for salmon survival. Juvenile growth and relative population abundance decreased during mining, but no such effects were observed in a neighbouring river unaffected by mining. Our results indicate that historical copper exposure has probably compromised the fitness of this Atlantic salmon population to the present day, and that fish scales are suitable biomarkers of past river pollution.
Показать больше [+] Меньше [-]Historical legacies of river pollution reconstructed from fish scales Полный текст
2018
Morán, Paloma | Cal, Laura | Cobelo-García, A. | Almécija, Clara | Caballero, Pablo | García de Leaniz, Carlos | Xunta de Galicia | European Commission
7 pages, 5 figures, 2 tables | Many rivers have been impacted by heavy metal pollution in the past but the long-term legacies on biodiversity are difficult to estimate. The River Ulla (NW Spain) was impacted by tailings from a copper mine during the 1970–1980s but absence of baseline values and lack of subsequent monitoring have prevented a full impact assessment. We used archived fish scales of Atlantic salmon to reconstruct levels of historical copper pollution and its effects on salmon fitness. Copper bioaccumulation significantly increased over baseline values during the operation of the mine, reaching sublethal levels for salmon survival. Juvenile growth and relative population abundance decreased during mining, but no such effects were observed in a neighbouring river unaffected by mining. Our results indicate that historical copper exposure has probably compromised the fitness of this Atlantic salmon population to the present day, and that fish scales are suitable biomarkers of past river pollution. | This work was partly funded by a grant from Xunta de Galicia and Fondos FEDER: "Unha maneira de facer Europa" (Axudas do programa de consolidación e estruturación de unidades de investigacións competitivas do SUG: ED431C 2016-037). | Peer reviewed
Показать больше [+] Меньше [-]Wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve, Sichuan, China during 2015–2016: Possible effects from regional emission reduction and local tourist activities Полный текст
2018
Qiao, Xue | Du, Jie | Kota, Sri Harsha | Ying, Qi | Xiao, Weiyang | Tang, Ya
In order to understand the impacts of regional emission changes and local tourism on sulfur and nitrogen wet deposition in Jiuzhaigou National Nature Reserve of southwestern China, wet deposition was monitored at a background site (Rize) and a tourist-affected site (PE: park entrance) in the reserve during 2015–2016. The observation data were compared between Rize and PE and between 2010–2011 and 2015–2016 monitoring campaigns. Also, the observation data were used in the Positive Matrix Factorization (PMF) model to identify the major sources of sulfur and nitrogen wet deposition. The results show that although local tourism emissions had considerable contributions to NH₄⁺, NO₂⁻, NO₃⁻, and SO₄²⁻ concentrations in wet deposition (p < 0.05), most of the annual Volume Weighted Mean (VWM) concentrations of these four ions were likely from emissions outside Jiuzhaigou. Annual wet deposition fluxes of the four ions were also affected more by precipitation and regional emissions than by local emissions. Although annual precipitation was higher at Rize (818 mm) during 2015–2016 than at another background site near Long Lake (LL: 752 mm) during 2010–2011, the annual concentrations and fluxes of SO₄²⁻ and NO₃⁻ wet deposition decreased by 77% and 74% for SO₄²⁻ and by 12% and 19% for NO₃⁻, respectively, most likely due to regional emission reductions. Similar large reductions in SO₄²⁻ and NO₃⁻ concentrations have been also found in some other sites in southwestern China. In contrast, the annual concentration and flux of NH₄⁺ wet deposition at Rize during 2015–2016 were 1.4 and 1.2 times of that measured at LL during 2010–2011, respectively. The results of source apportionment analysis and tour bus emission estimates suggest that elevated NH₄⁺ wet deposition was possibly related to NH₃ emissions from local tour buses, but additional studies on NH₃ emissions from tour buses in the reserve are needed to confirm this.
Показать больше [+] Меньше [-]Assessment tools for microplastics and natural fibres ingested by fish in an urbanised estuary Полный текст
2018
Halstead, Jennifer E. | Smith, James A. | Carter, Elizabeth A. | Lay, Peter A. | Johnston, Emma L.
Microplastics and fibres occur in high concentrations along urban coastlines, but the occurrence of microplastic ingestion by fishes in these areas requires further investigation. Herein, the ingestion of debris (i.e., synthetic and natural fibres and synthetic fragments of various polymer types) by three benthic-foraging fish species Acanthopagrus australis (yellowfin bream), Mugil cephalus (sea mullet) and Gerres subfasciatus (silverbiddy) in Sydney Harbour, Australia has been quantified and chemically speciated by vibrational spectroscopy to identify the polymer type. Ingested debris were quantified using gut content analysis, and identified using attenuated total reflectance Fourier transform infrared (ATR-FTIR) and Raman microspectroscopies in combination with principal component analysis (PCA). The occurrence of debris ingestion at the time of sampling ranged from 21 to 64% for the three species, and the debris number ranged from 0.2 to 4.6 items per fish for the different species, with ∼53% of debris being microplastic. There was a significant difference in the amount of debris ingested among species; however, there was no difference among species when debris counts were standardised to fish weight or gut content weight, indicating that these species ingest a similar concentration of debris relative to their ingestion rate of other material. ATR-FTIR microspectroscopy successfully identified 72% of debris. Raman spectroscopy contributed an additional 1% of successful identification. In addition, PCA was used to non-subjectively classify the ATR-FTIR spectra resulting in the identification of an additional 9% of the debris. The most common microplastics found were polyester (PET), acrylic-polyester blend, and rayon (semi-synthetic) fibres. The potential of using Raman microspectroscopy for debris identification was investigated and provided additional information about the nature of the debris as well as the presence of specific dyes (and hence potential toxicity).
Показать больше [+] Меньше [-]