Уточнить поиск
Результаты 1171-1180 из 6,473
Associations of greenness with gestational diabetes mellitus: The Guangdong Registry of Congenital Heart Disease (GRCHD) study
2020
Qu, Yanji | Yang, Boyi | Lin, Shao | Bloom, Michael S. | Nie, Zhiqiang | Ou, Yanqiu | Mai, Jinzhuang | Wu, Yong | Gao, Xiangmin | Dong, Guanghui | Liu, Xiaoqing
Gestational diabetes mellitus (GDM) is associated with adverse short- and long-term health outcomes among mothers and their offspring. GDM affects 0.6%–15% of pregnancies worldwide and its incidence is increasing. However, intervention strategies are lacking for GDM. Previous studies indicated a protective association between greenspace and type 2 diabetes mellitus (T2DM), while few studies have explored the association between greenness and GDM. This study aimed to investigate the association between residential greenness and GDM among women from 40 clinical centers in Guangdong province, south China. The study population comprised 5237 pregnant mothers of fetuses and infants without birth defects, from 2004 to 2016. There were n = 157 diagnosed with GDM according to World Health Organization criteria. We estimated residential greenness using the Normalized Difference Vegetation Index (NDVI), derived from satellite imagery using a spatial-statistical model. Associations between greenness during pregnancy and GDM were assessed by confounder-adjusted random effects log-binomial regression models, with participating centers as the random effect. One interquartile increments of NDVI₂₅₀ₘ, NDVI₅₀₀ₘ and NDVI₁₀₀₀ₘ were associated with 13% (RR = 0.87, 95%CI: 0.87–0.87), 8% (RR = 0.92, 95%CI: 0.91–0.92) and 3% (RR = 0.97, 95%CI: 0.97–0.97) lower risks for GDM, respectively. However, NDVI₃₀₀₀ₘ was not significantly associated with GDM (RR = 0.96, 95%CI: 0.78–1.19). The risk for GDM decreased monotonically with greater NDVI. The protective effect of greenness on GDM was stronger among women with lower socioeconomic status and in environments with a lower level air pollutants. Our results suggest that greenness might provide an effective intervention to decrease GDM. Greenness and residential proximity to greenspace should be considered in community planning to improve maternal health outcomes.
Показать больше [+] Меньше [-]Development of a fate and transport model for biodegradation of PBDE congeners in sediments
2020
Karakas, Filiz | Aksoy, Aysegul | Imamoglu, Ipek
Polybrominated diphenyl ethers (PBDEs) are a family where each congener possesses different physicochemical properties, persistence and/or toxicity. Biodegradation can selectively change the abundance of congeners. These warrant modeling of individual congeners by considering biodegradation pathways together with fate and transport (F&T) mechanisms. Accordingly, this study aims to develop a F&T model (Fate and Transport model for Hydrophobic Pollutants - FTHP) that integrates congener specific biodegradation of PBDEs in sediments. The model is tested using sediment data from a location representing the Lower South Bay of San Francisco. Results demonstrated settling, resuspension, and biodegradation as important mechanisms. FTHP is then used to predict congener concentrations in a period of 20 years for two cases (constant and time-dependent water column concentrations) and four alternative scenarios: no intervention (i.e., natural attenuation, also serves as the base case), no degradation, dredging and biostimulation. The greatest impact on the reduction of total PBDE concentrations was achieved by a reduction in water column concentrations, i.e. source control, and dredging. On the other hand, biostimulation coupled with source control was the most effective in reducing bioaccumulative PBDE congener concentrations and almost as effective as dredging for the rest of congeners. Proposed FTHP model can distinguish between congeners and help devise informed management plans which focus on decreasing risks associated with persistent and bioaccumulative compounds in contaminated sediments.
Показать больше [+] Меньше [-]Toxic effects of the Emamectin Benzoate exposure on cultured human bronchial epithelial (16HBE) cells
2020
Niu, Chenguang | Wang, Chunli | Wu, Guangyao | Yang, Jingnan | Wen, Yanan | Meng, Shuangshuang | Lin, Xuhong | Pang, Xiaobin | An, Lei
Pesticides pollution has caused serious environmental problems in recent years, and mounting evidence has shown that more and more insecticides have serious risk in human health. Emamectin Benzoate formally regarded as a highly safety insecticide based on its exclusive targets, but the cytotoxicity to human lung was ignored for a long time. In the present study, bioassay experiments were used to assess the toxicity of the Emamectin Benzoatein on human non-target cells including cell viability assay, DNA damage assay, flow cytometer assay and western blotting assay. The results indicated that Emamectin Benzoatecan cause the inhibition of the proliferation, cytochrome c release, activation of caspase-3/9 and increase Bax/Bcl-2 ratio, which means it induced the cytotoxicity on 16HBE cells associated with the mitochondrial apoptosis. Besides, the DNA damge caused by the Emamectin Benzoate suggest it has a potential genotoxic effect on human lung cells.
Показать больше [+] Меньше [-]Grass carps co-exposed to environmentally relevant concentrations of cypermethrin and sulfamethoxazole bear immunodeficiency and are vulnerable to subsequent Aeromonas hydrophila infection
2020
Zhao, Hongjing | Wang, Yu | Guo, Menghao | Mu, Mengyao | Yu, Hongxian | Xing, Mingwei
The aquatic ecosystem is seriously damaged because of the heavy use of pesticides and antibiotics. Fish is the indispensable link between environmental pollution and human health. However, the toxic effects of environment-related concentrations of pesticides and antibiotics in fish have not been thoroughly studied. In this study, grass carps exposed to cypermethrin (CMN, 0.651 μg/L) or/and sulfamethoxazole (SMZ, 0.3 μg/L) for 42 days caused oxidative stress, apoptosis and immunodeficiency in the spleen of grass carps. CMN or/and SMZ exposure led to oxidative damage (consumption of antioxidant enzymes (superoxide dismutase and catalase)) and lipid peroxidation (accumulation of malondialdehyde), induced apoptosis (increases in TUNEL index, Bax/bcl-2, p53, puma and Caspase family expression). In addition, the levels of immunoglobulin M (IgM), complement 3 (C3) were significantly decreased in all treatment groups, which trend was also found in C-reactive protein in CMN and MIX group, and lysozyme in MIX group. Transcription of almost all genes involved in the Toll-like receptors (TLR) signaling pathway was up-regulated under CMN or/and SMZ exposure. However, when subsequently attacked by Aeromonas hydrophila for 2 days, the TLR pathway was inhibited in spleens of all treatment groups accompanied by higher mortality. Overall, the environmentally relevant concentration of CMN and SMZ damages the immune system, triggering oxidative stress and apoptosis in carps. And by affecting the conduction of TLR signaling pathway, CMN or/and SMZ exposure inhibits the innate immune response of fish and reducing their disease resistance. This study highlights the importance of rational and regulated use of these pesticides and antibiotics.
Показать больше [+] Меньше [-]Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy?
2020
Conticini, Edoardo | Frediani, Bruno | Caro, Dario
This paper investigates the correlation between the high level of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) lethality and the atmospheric pollution in Northern Italy. Indeed, Lombardy and Emilia Romagna are Italian regions with both the highest level of virus lethality in the world and one of Europe’s most polluted area. Based on this correlation, this paper analyzes the possible link between pollution and the development of acute respiratory distress syndrome and eventually death. We provide evidence that people living in an area with high levels of pollutant are more prone to develop chronic respiratory conditions and suitable to any infective agent. Moreover, a prolonged exposure to air pollution leads to a chronic inflammatory stimulus, even in young and healthy subjects. We conclude that the high level of pollution in Northern Italy should be considered an additional co-factor of the high level of lethality recorded in that area.
Показать больше [+] Меньше [-]High temporal resolution measurements of ammonia emissions following different nitrogen application rates from a rice field in the Taihu Lake Region of China
2020
Yang, Wenliang | Que, Huali | Wang, Shuwei | Zhu, Anning | Zhang, Yujun | He, Ying | Xin, Xiuli | Zhang, Xianfeng | Ding, Shijie
Ammonia emission is one of the dominant pathways of nitrogen fertilizer loss from rice fields in China. It is difficult to measure ammonia emissions by high-frequency sampling with the chamber methods widely used in China, which is of great significance for investigating the environmental effects on the ammonia emissions. The chamber methods also can not accurately determine the ammonia emissions. In this study, the backward Lagrangian stochastic dispersion model, with ammonia concentrations continuously measured by the open-path tunable diode laser absorption spectroscopy technique, was used to determine ammonia emissions from a rice field after fertilizer application at excessive (270 kg N ha⁻¹) and appropriate (210 kg N ha⁻¹) rates in the Taihu Lake Region of China. High temporal resolution measurements of ammonia emissions revealed that high intraday fluctuations of ammonia emissions were significantly affected by the meteorological conditions. Multiple regression analysis showed a dominant solar radiation dependence of intraday ammonia emission cycles, especially during the rice panicle formation stage. The NH₄⁺-N concentrations of the surface water of the rice field were found to be the decisive factor that influenced interday dynamics of ammonia emissions. Accurate quantifications of ammonia emissions indicated that the total ammonia losses under appropriate nitrogen application rate were 27.4 kg N ha⁻¹ during the rice tillering stage and 11.2 kg N ha⁻¹ during the panicle formation stage, which were 29.4% and 17.0% less than those under traditional excessive nitrogen application rate used by the local farmers, respectively. The ammonia loss proportions during the rice panicle formation stage were significantly lower than those of the tillering stage, which might be due to different nitrogen application rates and environmental effects during the two stages. This study indicated that the open-path tunable diode laser absorption spectroscopy technique could facilitate the investigation of high temporal resolution dynamic of ammonia emissions from farmland and the environmental influence on the ammonia emissions.
Показать больше [+] Меньше [-]Identification of epigenetic mechanisms in paddy crop associated with lowering environmentally related cadmium risks to food safety
2020
Feng, Sheng Jun | Liu, Xue Song | Ma, Li Ya | khan, Irfan ullah | Rono, Justice Kipkoir | Yang, Zhi Min
Cadmium (Cd) is a toxic metal that contributes to human diseases such as pediatric cancer and cardiovascular dysfunction. Epigenetic modification caused by Cd exposure is the major factor in etiology of environmentally-relevant diseases. However, the underlying epigenetic mechanism for Cd uptake and accumulation in food crops, particularly those growing in Cd-contaminated environments, is largely unknown. This study investigated uncharacterized regulatory mechanisms and biological functions of global DNA hypomethylation at CG sites that are associated with gene expression for Cd detoxification and accumulation in the food crop rice. Mutation of the CG maintenance enzyme OsMET1 confers rice tolerance to Cd exposure. Genome-wide analysis of OsMET1 loss of function mutant Osmet1 and its wild type shows numerous loci differentially methylated and upregulated genes for Cd detoxification, transport and accumulation. We functionally identified a new locus for a putative cadmium tolerance factor (here termed as OsCTF) and demonstrated that Cd-induced DNA demethylation is the drive of OsCTF expression. The 3′-UTR of OsCTF is the primary site of DNA and histone (H3K9me2) demethylation, which is associated with higher levels of OsCTF transcripts detected in the Osmet1 and Ossdg714 mutant lines. Mutation of OsCTF in rice led to hypersensitivity to Cd and the Osctf line accumulated more Cd, whereas transfer of OsCTF back to the Osctf mutant completely restored the normal phenotype. Our work unveiled an important epigenetic mechanism and will help develop breeding crops that contribute to food security and better human health.
Показать больше [+] Меньше [-]Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture?
2020
Meftaul, Islam Md | Venkateswarlu, Kadiyala | Dharmarajan, Rajarathnam | Annamalai, Prasath | Asaduzzaman, M. | Parven, Aney | Megharaj, Mallavarapu
Glyphosate, introduced by Monsanto Company under the commercial name Roundup in 1974, became the extensively used herbicide worldwide in the last few decades. Glyphosate has excellent properties of fast sorption in soil, biodegradation and less toxicity to nontarget organisms. However, glyphosate has been reported to increase the risk of cancer, endocrine-disruption, celiac disease, autism, effect on erythrocytes, leaky-gut syndrome, etc. The reclassification of glyphosate in 2015 as ‘probably carcinogenic’ under Group 2A by the International Agency for Research on Cancer has been broadly circulated by anti-chemical and environmental advocacy groups claiming for restricted use or ban of glyphosate. In contrast, some comprehensive epidemiological studies involving farmers with long-time exposure to glyphosate in USA and elsewhere coupled with available toxicological data showed no correlation with any kind of carcinogenic or genotoxic threat to humans. Moreover, several investigations confirmed that the surfactant, polyethoxylated tallow amine (POEA), contained in the formulations of glyphosate like Roundup, is responsible for the established adverse impacts on human and ecological health. Subsequent to the evolution of genetically modified glyphosate-resistant crops and the extensive use of glyphosate over the last 45 years, about 38 weed species developed resistance to this herbicide. Consequently, its use in the recent years has been either restricted or banned in 20 countries. This critical review on glyphosate provides an overview of its behaviour, fate, detrimental impacts on ecological and human health, and the development of resistance in weeds and pathogens. Thus, the ultimate objective is to help the authorities and agencies concerned in resolving the existing controversies and in providing the necessary regulations for safer use of the herbicide. In our opinion, glyphosate can be judiciously used in agriculture with the inclusion of safer surfactants in commercial formulations sine POEA, which is toxic by itself is likely to increase the toxicity of glyphosate.
Показать больше [+] Меньше [-]Biomonitoring of perylene in symbiotic reef and non-reef building corals and species-specific responses in the Kharg and Larak coral reefs (Persian Gulf, Iran): Bioaccumulation and source identification
2020
Ranjbar Jafarabadi, Ali | Dashtbozorg, Mehdi | Raudonytė-Svirbutavičienė, Eva | Riyahi Bakhtiari, Alireza
In this study, coral soft tissue, skeleton and zooxanthellae, as well as their ambient sediment and seawater were analyzed for polycyclic aromatic hydrocarbons (PAHs) with a special focus on perylene. Samples were collected from two different environments: the Kharg Island, which is affected by numerous anthropogenic stressors and Larak Island, which is mainly used for recreational and fishing activities and is characterized by dense vegetation. The heaviest loadings of PAHs were observed on Kharg Island, yet higher concentrations of perylene were detected on Larak Island and it was identified as the prevailing compound in this area. Pyrogenic perylene sources were prevailing on Kharg Island, whereas the perylene on Larak Island was determined to be of natural origin. After analyzing the biological samples, higher perylene concentrations were observed in zooxanthellae than in tissue and skeleton. The lowest and the highest perylene loadings were found in the tissue and skeleton of Platygyra daedalea and Porites lutea, respectively. This applies to both reefs. We found that perylene distribution in the corals and their ambient environment follows an irregular pattern, demonstrating remarkable effects from the local inputs. The lipid content in the coral tissue and the location of the coral colony were deduced to be the main factors affecting perylene distribution in corals. On Larak Island, a significant correlation between perylene loadings in sediment and corals was observed. On Kharg Island, a strong interaction between the water column and the corals was detected. The symbiotic relationship between the corals and zooxanthellae might play the most significant role in bioconcentration and bioaccumulation of perylene. Due to the insolubility of PAHs, they could be transferred through a food chain to zooxanthellae and eventually deposited in the coral bodies.
Показать больше [+] Меньше [-]Identification of novel paraben-binding peptides using phage display
2020
Lee, Jaewoong | Kim, Ji Hun | Kim, Bit-Na | Kim, Taehwan | Kim, Sunchang | Cho, Byung-Kwan | Kim, Yang-Hoon | Min, Jiho
Parabens are alkyl esters of 4-hydroxybenzoic acid, which is derived from a family of synthetic esters of p-hydroxybenzoic acid. Among all the kinds of paraben, two parabens (methyl paraben, MP; and n-propyl paraben, PP) are the most generally used as preservatives in personal care products, such as cosmetics, pharmaceuticals, and food also, and are often presented together. However, a number of studies have reported that the toxicity of parabens affects the water environment, and human as well. This study utilized M13 phage display technology to provide easy, efficient, and relatively inexpensive methods to identify peptides that bind to MP and PP, respectively, to remove in wastewater. At first, biopanning was performed, to sort MP and PP specific binding phages, and three cases of experiment, including negative control (NC), which could sort unspecific binding phage, were conducted at the same time. Phage binding affinity tests were substituted by concentration reduction using antibody conjugated magnetic beads, and paraben concentration was measured by HPLC. Analysis showed that the MP concentration reduction of 38% was the highest in M4 phage, while the PP concentration reduction of 44% was the highest in P3 phage. We successfully screened two peptides specific to MP and PP, namely, MP4 and PP3, respectively; the results showed that the MP concentration reduction in MP4 was the highest at 44%, and the PP concentration reduction in PP3 was the highest at 39%, and their specificity was measured by the capture rate between target and control. In conclusion, the phage display technique shows applicability to the removal of parabens in water; furthermore, it also shows the possibility of the detection or removal of other chemicals.
Показать больше [+] Меньше [-]