Уточнить поиск
Результаты 1171-1180 из 8,088
Size-activity threshold of titanium dioxide-supported Cu cluster in CO oxidation Полный текст
2021
Khan, Wasim Ullah | Yu, Iris K.M. | Sun, Yuqing | Polson, Matthew I.J. | Golovko, Vladimir | Lam, Frank L.Y. | Ogino, Isao | Tsang, Daniel C.W. | Yip, Alex C.K.
Development of non-noble metal cluster catalysts, aiming at concurrently high activity and stability, for emission control systems has been challenging because of sintering and overcoating of clusters on the support. In this work, we reported the role of well-dispersed copper nanoclusters supported on TiO₂ in CO oxidation under industrially relevant operating conditions. The catalyst containing 0.15 wt% Cu on TiO₂ (0.15 CT) exhibited a high dispersion (59.1%), a large specific surface area (381 m²/gCᵤ), a small particle size (1.77 nm), and abundant active sites (75.8% Cu₂O). The CO oxidation activity measured by the turnover frequency (TOF) was found to be enhanced from 0.60 × 10⁻³ to 3.22 × 10⁻³ molCO·molCᵤ⁻¹·s⁻¹ as the copper loading decreased from 5 to 0.15 wt%. A CO conversion of approximately 60% was still observed in the supported cluster catalyst with a Cu loading of 5 wt% at 240 °C. No deactivation was observed for catalysts with low copper loading (0.15 and 0.30 CT) after 8 h of time-on-stream, which compares favorably with less stable Au cluster-based catalysts reported in the literature. In contrast, catalysts with high copper loading (0.75 and 5 CT) showed deactivation over time, which was ascribed to the increase in copper particle size due to metal cluster agglomeration. This study elucidated the size-activity threshold of TiO₂-supported Cu cluster catalysts. It also demonstrated the potential of the supported Cu cluster catalyst at a typical temperature range of diesel engines at light-load. The supported Cu cluster catalyst could be a promising alternative to noble metal cluster catalysts for emission control systems.
Показать больше [+] Меньше [-]Profile and consumption risk assessment of trace elements in megamouth sharks (Megachasma pelagios) captured from the Pacific Ocean to the east of Taiwan Полный текст
2021
Ju, Yun-Ru | Chen, Chih-Feng | Chen, Chiu-Wen | Wang, Ming-Huang | Joung, Shoou-Jeng | Yu, Chi-Ju | Liu, Kwang-Ming | Tsai, Wen-Pei | Vanson Liu, Shang Yin | Dong, Cheng-Di
Focusing on 27 rare filter-feeding megamouth sharks (Megachasma pelagios) captured as a by-catch of drift gillnet fishery in the Pacific Ocean to the east of Taiwan, this study analyzes the concentrations of 24 elements in their muscle, discusses the bioaccumulation of each element and the correlation between different elements, and assesses the potential health risks of consuming megamouth shark muscle. Among the 24 elements, mean concentrations of Ga, Ag, Li, Bi, Hg, Co, and Cd were relatively low ranging from 10⁻³ to 10⁻¹ mg/kg, those of Pb, Ba, Mn, Ni, As, Cr, B, Sr, Cu, and Zn ranged from 10⁻¹–10¹ mg/kg, and those of Fe, Ca, Al, K, Mg, Ti, and Na were relatively high ranging from 10¹ to 10³ mg/kg. The toxic element content index was most significantly correlated with the concentration of Cu. Hence, this study recommends that the concentration of Cu could be used as an indicator of metal accumulation in megamouth shark muscle. The log bioconcentration factor (BCF) ranged from less than 0 to 7.85 in shark muscle. For elements with a concentration of less than 100 μg/L in seawater, the log BCF was inversely proportional to their concentration in seawater. According to the correlation analysis, the accumulation of elements in muscle of megamouth sharks is primarily affected by the concentrations of dissolved elements in seawater, except that the accumulation of Hg, As, Cu, Ti, Al, and Fe appears to be mainly affected by feeding behaviors. The assessment of the health risk of consuming megamouth shark muscle showed that its total hazard index was greater than 1. This suggests that the long-term or high-frequency consumption of megamouth shark muscle may cause health hazards due to the accumulation of trace elements, particularly those with a large contribution of health risk, including As, Hg, and Cu.
Показать больше [+] Меньше [-]Time-, dose- and transgenerational effects of fluoxetine on the behavioural responses of zebrafish to a conspecific alarm substance Полный текст
2021
Al Shuraiqi, Asma | Al-Habsi, Aziz | Barry, Michael J.
Despite publication of numerous of papers, the effects of fluoxetine on fish behaviour remains mired in controversy and contradiction. One reason for this controversy is that fluoxetine displays distinct and opposing acute and chronic effects. A second reason is that most studies have been limited to two or at the most three concentrations. To address these deficiencies we exposed adult zebrafish, both single females and shoals consisting of one male and two females, to seven fluoxetine concentrations, ranging from 5 ng/L to 5 μg/L and measured their swimming behaviour, and response to a conspecific alarm substance (CAS) at seven, 14 and 28 days. We also measured the light startle response of unexposed F1 larvae at days seven and 28 post-hatch and the response to CAS at day 28. On day 7 fluoxetine decreased swimming speed at concentrations ≥500 ng/L. After addition of CAS fish exposed to 5, 500 and 1000 ng/L decreased swimming, while fish exposed to 10, 500 and 1000 ng/L significantly increased time motionless. On day 14 only fish exposed to 50 ng/L were significantly slower than controls before addition of CAS, but afterwards fish exposed to 5, 50, 1000 and 5000 ng/L showed significant differences from controls. On day 28 fish exposed to 50 and 5000 ng/L had slower average swimming speeds than controls before addition of CAS. After addition all fish except controls and those exposed to 500 ng/L showed decreased average speed. At seven days post-hatch, F1 larvae whose parents were exposed to 100 ng/L showed significantly higher activity than controls and those exposed to 500 ng/L fluoxetine showed lower activity in the light startle response. This study shows that the effects of fluoxetine vary with time and also in a non-monotonic manner. We suggest that the complex nature of the serotonergic system with multilateral effects at the genomic, biochemical and physiological levels interacting with environmental stimuli result in non-linear dose-response behavioural patterns.
Показать больше [+] Меньше [-]Indoor heating triggers bacterial ecological links with tap water stagnation during winter: Novel insights into bacterial abundance, community metabolic activity and interactions Полный текст
2021
Zhang, Haihan | Xu, Lei | Huang, Tinglin | Liu, Xiang | Miao, Yutian | Liu, Kaiwen | Qian, Xuming
The overnight stagnation of tap water in plumbing systems can lead to water quality deterioration. Meanwhile, the indoor heating can improve the indoor temperature in cold areas during winter, which may affect the quality of tap water during stagnation. However, indoor heating drives bacterial ecological links with tap water stagnation during winter are not well understood. The results indicated that the water temperature increased significantly after stagnation during indoor heating periods. Moreover, the average intact cell number and total adenosine triphosphate (ATP) concentration increased 1.53-fold and 1.35-fold after stagnation, respectively (P < 0.01). In addition, the increase in the ATP per cell number indicated that the combined effects of stagnation and indoor heating could enhance the bacterial activity. Biolog data showed that the bacterial community metabolic capacity was significantly higher in stagnant water than that of fresh water. Co-occurrence networks suggested that the bacterial metabolic profile changed after stagnation during the heating periods. DNA analysis indicated that the composition of the bacterial community changed dramatically after stagnation. The abundances of potential pathogens such as Mycobacterium sp. and Pseudomonas sp. also increased after stagnation. These results will give novel insights on comprehensive understanding the combined effects of indoor heating and overnight stagnation on the water bacterial community ecology of plumbing systems, and provide a scientific basis for tap water quality management after overnight stagnation during the indoor heating periods.
Показать больше [+] Меньше [-]On modelling growing menace of household emissions under COVID-19 in Indian metros Полный текст
2021
Beig, Gufran | Korhale, Nikhil | Rathod, Aditi | Maji, Sujit | Sahu, Saroj K. | Dole, Shruti | Latha, R. | Murthy, B.S.
While local anthropogenic emission sources contribute largely to deteriorate metro air quality, long range transport can also play a significant role in influencing levels of pollutants, particularly carbon monoxide (CO) that has a relatively long life span. A nationwide lockdown of two months imposed across India amid COVID-19 led to a dramatic decline in major sources of emissions except for household, mainly from cooking. This initially led to declined levels of CO in two of the largest megacities of India, Delhi and Mumbai under stable weather conditions, followed by a distinctly different variability under the influence of prevailing mesoscale circulation. We hereby trace the sources of CO from local emissions to transport pathways and interpret the observed variability in CO using the interactive WRF-Chem model and back trajectory analysis. For this purpose, COVID-19 emission inventory of CO has been estimated. Model results indicate a significant contribution from externally generated CO in Delhi from surrounding regions and an unusual peak on 17th May amid lockdown due to long range transport from the source region of biofuel emissions in central India. However, the oceanic winds played a larger role in keeping CO levels in check in a coastal megacity Mumbai which otherwise has high CO emissions from household sources due to a larger share of urban slums. Keeping track of evolving carbon-intensive pathways can help inform government responses to the COVID-19 pandemic to prioritize controls of emissions sources.
Показать больше [+] Меньше [-]Independent and combined associations of urinary heavy metals exposure and serum sex hormones among adults in NHANES 2013–2016 Полный текст
2021
Tao, Chengzhe | Li, Zhi | Fan, Yun | Li, Xiuzhu | Qian, Hong | Yu, Hao | Xu, Qiaoqiao | Lu, Chuncheng
Accumulating evidences indicated that heavy metals may disrupt human sex hormones. However, the combined effects of heavy metals on sex hormones remain to be clarified. To explore the independent and combined associations between heavy metal exposure and serum sex hormones among adults, data of 2728 adults from the National Health and Nutrition Examination Survey (NHANES) was applied. We examined independent and combined associations of fourteen urinary heavy metals and three serum sex steroid hormones (total testosterone (TT), estradiol (E2) and sex hormone-binding globulin (SHBG)). Multivariate linear regression was used to evaluate the independent associations between metal exposure and sex hormone alterations. Principle component analysis -weighted quantile sum regression (PCA-WQSR) model was performed to estimate the combined associations in our individuals. In the co-exposure model, we determined that weighted quantile sum (WQS) index of industrial pollutants was negatively associated with E2 in females (WQS Percent change₈₋ₘₑₜₐₗ = -20.6%; 95% CI: -30.1%, -9.96%), while in males WQS index of water pollutants was negatively related to SHBG (WQS Percent change₈₋ₘₑₜₐₗ = -5.35%; 95% CI: -9.88%, -0.598%). Cadmium (Cd), tin (Sn) and lead (Pb) were the dominating metals of female E2-negative association while Ba was the leading contributor related to male SHBG reduction, which was consistent with the results of multivariate linear regression. Additionally, in postmenopausal women, the associations of E2 decrease with heavy metal co-exposure remained significant while Cd and monomethylarsonic acid (MMA) were identified as hazardous metals in the mixture. We concluded that the exposure to heavy metals was associated with human sex hormone alterations in independent or combined manners. Considering the design of NHANES study, further studies from other national-representative surveys are necessary.
Показать больше [+] Меньше [-]Source apportionment of marine atmospheric aerosols in northern South China Sea during summertime 2018 Полный текст
2021
Liang, Baoling | Cai, Mingfu | Sun, Qibin | Zhou, Shengzhen | Zhao, Jun
Marine atmospheric aerosols play important roles in the global radiation balance and climate change. Hence, measuring physiochemical aerosol properties is essential to better understand their formation, aging processes, and source origins. However, high temporal resolution measurements of submicron particles are currently scarce in the northern South China Sea (SCS). In this study, we conducted a ship-based cruise campaign with a scanning mobility particle sizer and an online time of flight aerosol chemical speciation monitor to measure the particle number size distribution (PNSD) and the chemical composition of submicron particles over the northern SCS during summer 2018. The mean concentration of non-refractory submicron particulate matter (NR-PM₁) was generally 9.11 ± 4.86 μg m⁻³; sulfate was the most abundant component, followed by organics, ammonium, nitrate, and chloride. Positive matrix factorization (PMF) analysis was applied to the PNSD (size PMF) and organic aerosols (OA PMF) and further investigated the source apportionment of the submicron particles. The size PMF identified four factors, including ship exhaust, ship influencing marine primary, continent affected marine secondary, and mixed accumulation aerosols. The most abundant particles in the number concentration were associated with ship emissions, which accounted for approximately 44 %. The submicron organic aerosols were highly oxidized and composed of low-volatility oxygenated OA (LV-OOA, 68 %), semi-volatile OOA (SV-OOA, 21 %), and hydrocarbon-like OA (HOA, 11 %). The backward trajectory of air masses showed that the northern SCS was most frequently (64.7 %) influenced by air masses from the Indo-Chinese Peninsula (ICP) during the campaign, implying that pollutants from ICP have a significant impact on the atmosphere of the northern SCS during summer. Thus, in situ ship-based cruise measurements can provide valuable data on the physiochemical characteristics of marine atmospheric aerosols to better understand their source origins.
Показать больше [+] Меньше [-]Effects of nitrogen-enriched biochar on rice growth and yield, iron dynamics, and soil carbon storage and emissions: A tool to improve sustainable rice cultivation Полный текст
2021
Yin, Xiaolei | Peñuelas, Josep | Sardans, Jordi | Xu, Xuping | Chen, Youyang | Fang, Yunying | Wu, Liangquan | Singh, Bhupinder Pal | Tavakkoli, Ehsan | Wang, Weiqi
Biochar is often applied to paddy soils as a soil improver, as it retains nutrients and increases C sequestration; as such, it is a tool in the move towards C-neutral agriculture. Nitrogen (N) fertilizers have been excessively applied to rice paddies, particularly in small farms in China, because N is the major limiting factor for rice production. In paddy soils, dynamic changes in iron (Fe) continuously affect soil emissions of methane (CH₄) and carbon dioxide (CO₂); however, the links between Fe dynamics and greenhouse gas emissions, dissolved organic carbon (DOC), and rice yields following application of biochar remain unclear. The aims of this study were to examine the effects of two rates of nitrogen (N)-enriched biochar (4 and 8 t ha⁻¹ y⁻¹) on paddy soil C emissions and storage, rice yields, and Fe dynamics in subtropical early and late rice growing seasons. Field application of N-enriched biochar at 4 and 8 t ha⁻¹ increased C emissions in early and late rice, whereas application at 4 t ha⁻¹ significantly increased rice yields. The results of a culture experiment and a field experiment showed that the application of N-enriched biochar increased soil Fe²⁺concentration. There were positive correlations between Fe²⁺concentrations and soil CO₂, CH₄, and total C emissions, and with soil DOC concentrations. On the other way around, these correlations were negative for soil Fe³⁺concentrations. In the soil culture experiment, under the exclusion of plant growth, N-enriched biochar reduced cumulative soil emissions of CH₄ and CO₂. We conclude that moderate inputs of N-rich biochar (4 t ha⁻¹) increase rice crop yield and biomass, and soil DOC concentrations, while moderating soil cumulative C emissions, in part, by the impacts of biochar on soil Fe dynamics. We suggest that water management strategies, such as dry-wet cycles, should be employed in rice cultivation to increase Fe²⁺ oxidation for the inhibition of soil CH₄ and CO₂ production. Overall, we showed that application of 4 t ha⁻¹ of N-enriched biochar may represent a potential tool to improve sustainable food production and security, while minimizing negative environmental impacts.
Показать больше [+] Меньше [-]Microplastics impair growth in two atlantic scleractinian coral species, Pseudodiploria clivosa and Acropora cervicornis Полный текст
2021
Hankins, Cheryl | Moso, Elizabeth | Lasseigne, Danielle
Scleractinian coral are experiencing global and regional stressors. Microplastics (<5 mm) are an additional stressor that may cause adverse effects on coral. Experiments were conducted to investigate ingestion size limits and retention times of microspheres in a two-day exposure as well as observing growth responses in a 12-week exposure in two Atlantic species, Pseudodiploria clivosa and Acropora cervicornis. In the two-day exposure, P. clivosa ingested a higher number of microspheres ranging in size from 425 μm–2.8 mm than A. cervicornis. Both species egested the majority of microspheres within 48 h of ingestion. In the long-term exposure, calcification and tissue surface area were negatively affected in the treatment group of both species. Exposure also negatively affected buoyant weight in A. cervicornis but not in P. clivosa. The results indicate that microplastics can affect growth responses, yet additional research is warranted to investigate potential synergistic impacts of microplastics and other stressors.
Показать больше [+] Меньше [-]Direct and cross impacts of upwind emission control on downwind PM2.5 under various NH3 conditions in Northeast Asia Полный текст
2021
Kim, Eunhye | Kim, Byeong-Uk | Kim, Hyun Cheol | Kim, Soontae
Emissions reductions in upwind areas can influence the PM₂.₅ concentrations in downwind areas via long-range transport. However, few studies have assessed the impact of upwind PM₂.₅ precursor controls on changes in downwind PM₂.₅ concentrations. In this study, we analyzed the overall impact of PM₂.₅ precursor emission controls in upwind areas on PM₂.₅ in downwind areas with two types of impacts: “direct impact” and “cross impact.” The former refers to PM₂.₅ changes in downwind areas due to the transported PM₂.₅ itself, whereas the latter represents PM₂.₅ changes due to reactions between the transported gaseous precursors and intermediates (i.e., HNO₃) originating from upwind areas and locally emitted precursors (i.e. NH₃) in the downwind areas. As a case study, we performed air quality modeling for Northeast Asia for January 15–17, 2016 by setting China and South Korea as the upwind and downwind areas, respectively. To account for potential spatiotemporal variations in NH₃ emissions in downwind areas, we considered two NH₃ conditions. When NOx emissions in China were reduced by 35%, in downwind areas the PM₂.₅ concentrations decreased by 2.2 μg/m³ under NH₃-rich conditions, while PM₂.₅ concentrations increased by 2.3 μg/m³ under NH₃-poor conditions. The direct impact increased by 4.0 μg/m³ in both cases due to upwind NOₓ disbenefit effects. However, the cross impacts led to a PM₂.₅ decrease of 6.2 μg/m³ under NH₃-rich conditions versus a PM₂.₅ increase of 1.7 μg/m³ under NH₃-poor conditions. We noted that PM₂.₅ concentrations in the downwind areas may not improve unless a cross impact outweighs a direct impact. This may be one of the reasons why South Korea PM₂.₅ concentrations have not declined despite efforts by China to reduce their PM₂.₅ precursor emissions.
Показать больше [+] Меньше [-]