Уточнить поиск
Результаты 1191-1200 из 4,938
Kinetics and mechanism of photocatalytic degradation of methyl orange in water by mesoporous Nd-TiO2-SBA-15 nanocatalyst Полный текст
2019
High-efficiency nanophotocatalysts with large specific surface areas have a broad range of application prospects in the catalytic oxidation treatment of organic pollutants in wastewater. A chemical method was used to synthesize a TiO₂ nanophotocatalyst with a mesoporous structure upon which a rare earth metal (Nd) was deposited, namely Nd-TiO₂-SBA-15 (NTS). The prepared NTS was characterized using X-ray diffractometry, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectrometry. The photocatalytic mechanism was explored using scavenger experiments with photoinduced carriers combined with total organic carbon and UV–Vis measurements. At the same time, the kinetic properties of the NTS photocatalytic degradation of methyl orange (MO) were evaluated. The results showed that the deposition of TiO₂ nanoparticles on the surface of the SBA-15 molecular sieve did not change the mesoporous structure, and Nd was uniformly distributed on the surface of the nanophotocatalyst. The photogenerated holes of the NTS played an important role in the photocatalysis process. In addition, the synthesized NTS had good adaptability in the range of pH 2–10. At pH 4, the reaction rate constant (k) of the MO photocatalytic degradation by NTS was 0.011825 mg·(L·min)⁻¹, and the adsorption equilibrium constant (K) was 0.051359 L mg⁻¹. In addition, the photocatalytic degradation rate of MO by NTS remained above 70%, even when the NTS was recycled four times. The NTS showed a good performance after recycling. This work provides a good foundation for the large-scale application of NTS.
Показать больше [+] Меньше [-]Modelling degradation kinetics of metformin and guanylurea in soil microcosms to derive degradation end-points Полный текст
2019
The degradation of metformin (MET) and guanylurea (GUA) fortified separately in freshly collected two top soils (0–10 cm) from New Zealand's pastoral region was studied under controlled laboratory conditions. Incubation studies were carried at 30 °C under aerobic conditions at 60% of maximum water holding capacity and at two (0.5 mg/kg and 5 mg/kg) nominal soil concentrations. Degradation profiles revealed a bi-phasic pattern of both the compounds with an initial rapid degradation followed by slow dissipation rate, resulting in poor fits by simple first order kinetics. However, the use of three non-linear mathematical models sufficiently described the measured data and well supported by an array of statistical indices to judge model's ability to fit the measured datasets. Further evaluation using box-whisker plots showed that double first-order in parallel (DFOP) and first-order two-compartment (FOTC) models best fitted the data points followed by the Bi-exponential (BEXP) model. Mechanistic assumptions from DFOP and FOTC suggest that degradation of MET and GUA proceeds at two different rates, possibly in two compartments. The calculated DT50 using both models were in the range of 2.7–15.5 days and 0.9–4 days, while 90% dissipation time (DT90) varied between 91 and 123 days and 44 and 137 days for MET and GUA, respectively. Degradation of both compounds were dependent on soil types and properties, incubation conditions and initial substrate concentration. Formation of GUA with decrease in MET concentration over time confirmed that GUA is a transformation product concomitantly formed from aerobic degradation of MET in soil.
Показать больше [+] Меньше [-]Seasonal variation, air-water exchange, and multivariate source apportionment of polycyclic aromatic hydrocarbons in the coastal area of Dalian, China Полный текст
2019
The concentrations and seasonal variations of polycyclic aromatic hydrocarbons (PAHs) in air and seawater dissolved samples from the coastal area of Dalian were investigated, as well as their air-water exchanges. The average concentrations of PAHs were 27.5 ± 14.6 ng/m³ and 49.5 ± 20.5 ng/L in the air and water, respectively. Phenanthrene was the dominant congener in both air and water dissolved phase. Seasonality was discovered in the air with the concentrations higher in winter than in summer, but not in the water dissolved phase. Air-water exchange trends also displayed apparent seasonality with 3–4 ring PAHs generally being volatilization or equilibrium in summer but deposition in winter, which highlighted the important influence of temperature on the air-water exchange direction of PAHs. The air-water exchange fluxes of individual PAH congeners ranged from −24331 to 6541 ng/m²/d, and the highest deposition and volatilization fluxes both appeared at the industrial areas, which emphasized the influence of point source emission to the magnitude of air-water diffusion flux of PAHs. Multivariate source apportionment approaches, including principle component analysis, diagnostic ratios, and positive matrix factorization, were conducted, which suggested that PAHs in water originated from multiple sources. Frequent port transport correlated vehicle/ship emission rather than coal combustion may be the primary contributor of PAHs to the coastal air and water.
Показать больше [+] Меньше [-]Cotransport of Herbaspirillum chlorophenolicum FA1 and heavy metals in saturated porous media: Effect of ion type and concentration Полный текст
2019
Li, Xiaohui | Xu, Hongxia | Gao, Bin | Yang, Zhidong | Sun, Yuanyuan | Shi, Xiaoqing | Wu, Jichun
Predicting the cotransport of functional microorganisms and heavy metals in porous media is essential to both bioremediation and pollutant risk assessment. In this study, batch and column experiments were conducted to explore the cotransport behaviors of functional bacteria (FA1) and heavy metals (Pb²⁺/Cd²⁺) in saturated sand media under different conditions. The sorption capacity of heavy metals on FA1 was much greater than that of the sand, while both FA1 and sand showed stronger affinity to Pb²⁺ than Cd²⁺. The surface properties, especially zeta potential, of the bacteria and sand were altered by metal adsorption. As a result, the co-existence of Pb²⁺ decreased the transport of FA1 more significantly than that of Cd²⁺, and the influence was more significant with higher heavy metal concentration. On the other hand, the co-existence of FA1 inhibited the mobility of Pb²⁺ and Cd²⁺ in most scenarios, except when the cotransport concentration of Pb²⁺ was 5 mg L⁻¹, and the inhibition was more pronounced for Pb²⁺ than Cd²⁺. Increase in metal concentrations decreased the FA1-associated Pb²⁺/Cd²⁺ in effluents due to the remarkable decrease in FA1 mobility, and free soluble Pb²⁺/Cd²⁺ became the major migration species. In addition, due to stronger attractive forces and affinity between Pb²⁺ and FA1, nearly all presorbed-Pb²⁺ by sand was remobilized by FA1 and transported mainly in FA1-associated form other than soluble Pb²⁺. Findings from this study indicated that the cotransport of biocolloids and heavy metals are highly sensitive to the ion type and concentration, and evaluation of their transport in the subsurface should be carefully carried out to avoid inaccurate estimations.
Показать больше [+] Меньше [-]Chronic exposure to non-eruptive volcanic activity as cause of bronchiolar histomorphological alteration and inflammation in mice Полный текст
2019
Camarinho, R. | Garcia, P.V. | Choi, H. | Rodrigues, A.S.
It is estimated that 10% of the worldwide population lives in the vicinity of an active volcano. However, volcanogenic air pollution studies are still outnumbered when compared with anthropogenic air pollution studies, representing an unknown risk to human populations inhabiting volcanic areas worldwide. This study was carried out in the Azorean archipelago of Portugal, in areas with active non-eruptive volcanism. The hydrothermal emissions within the volcanic complex of Furnas (São Miguel Island) are responsible for the emission of nearly 1000 tons of CO₂ per day, along with H₂S, the radioactive gas – radon, among others. Besides the gaseous emissions, metals (e.g., Hg, Cd, Al, Ni) and particulate matter are also released into the environment. We test the hypothesis that chronic exposure to volcanogenic air pollution alters the histomorphology of the bronchioles and terminal bronchioles, using the house mouse, Mus musculus, as bioindicator species. Mus musculus were live-captured at three different locations: two villages with active volcanism and a village without any type of volcanic activity (reference site). The histomorphology of the bronchioles (diameter, epithelium thickness, smooth muscle layer thickness, submucosa thickness and the histological evaluation of the peribronchiolar inflammation) and of the terminal bronchioles (epithelium thickness and classification) were evaluated. Mice chronically exposed to volcanogenic air pollution presented bronchioles with increased epithelial thickness, increased smooth muscle layer, increased submucosa thickness and increased peribronchiolar inflammation. Similarly, terminal bronchioles presented structural alterations consistent with bronchodysplasia. For the first time we demonstrate that chronic exposure to non-eruptive volcanically active environments causes inflammation and histomorphological alterations in mice lower airways consistent with asthma and chronic bronchitis. These results reveal that chronic exposure to non-eruptive volcanic activity represents a risk factor that can affect the health of the respiratory system of humans inhabiting hydrothermal areas.
Показать больше [+] Меньше [-]Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction Полный текст
2019
Xu, Xiaowei | Wang, Peng | Zhang, Jun | Chen, Chuan | Wang, Ziping | Kopittke, Peter M. | Kretzschmar, Ruben | Zhao, Fang-Jie
Arsenic (As) tends to mobilize in flooded paddy soil due to the reductive dissolution of the iron (oxyhydr)oxides to which As sorbs, resulting in elevated As accumulation in rice that poses a potential risk to the food safety and human health. Microbial sulfate reduction is an important biogeochemical process in paddy soils, but its impact on As mobilization remains poorly understood. In this study, we incubated eight As-contaminated paddy soils under flooded conditions to investigate the effect of sulfate addition on As mobility. Porewater Fe and As concentrations and As species were determined. Among the eight soils, an addition of 50 mg S kg⁻¹ as sodium sulfate decreased porewater arsenite only in two soils, which also showed a high mobilization of Fe²⁺. Further experiments showed that the addition of sulfate to these two soils stimulated microbial sulfate reduction but decreased porewater concentrations of both arsenite and Fe²⁺. Additionally, the supply of sulfate increased the fractions of As associated with acid volatile sulfides in the solid phase and decreased As uptake by rice in pot experiments under similar conditions. The effect of sulfate addition on porewater As was diminished by the addition of molybdate, an inhibitor of sulfate reducing bacteria. These results suggest the formation of secondary FeS minerals which co-precipitate or sorb arsenite as a likely mechanism of As immobilization, which was also supported by thermodynamic modeling of the pore water. Thus, sulfate additions can immobilize As and reduce its availability to rice plants in paddy soils containing a high potential for microbial Fe reduction, providing an efficient way to mitigate the As transfer to the food chain.
Показать больше [+] Меньше [-]Early life exposure to di(2-ethylhexyl)phthalate causes age-related declines associated with insulin/IGF-1-like signaling pathway and SKN-1 in Caenorhabditis elegans Полный текст
2019
How, Chun Ming | Yen, Pei-Ling | Wei, Chia-Cheng | Li, Shang-Wei | Liao, Vivian Hsiu-Chuan
Di(2-ethylhexyl)phthalate (DEHP) is an ubiquitous and emerging contaminant that is widely present in food, agricultural crop, and the environment, posing a potential risk to human health. This study utilized the nematode Caenorhabditis elegans to decipher the toxic effects of early life exposure to DEHP on aging and its underlying mechanisms. The results showed that exposure to DEHP at 0.1 and 1.5 mg/L inhibited locomotive behaviors. In addition, DEHP exposure significantly shortened the mean lifespan of the worms and further adversely affected pharyngeal pumping rate and defecation cycle in aged worms. Moreover, DEHP exposure also further enhanced accumulation of age-related biomarkers including lipofuscin, lipid peroxidation, and intracellular reactive oxygen species in aged worms. In addition, exposure to DEHP significantly suppressed gene expression of hsp-16.1, hsp-16.49, and hsp-70 in aged worms. Further evidences showed that mutation of genes involved in insulin/IGF-1-like signaling (IIS) pathway (daf-2, age-1, pdk-1, akt-1, akt-2, and daf-16) restored lipid peroxidation accumulation upon DEHP exposure in aged worms, whereas skn-1 mutation resulted in enhanced lipid peroxidation accumulation. Therefore, IIS and SKN-1 may serve as an important molecular basis for DEHP-induced age-related declines in C. elegans. Since IIS and SKN-1 are highly conserved among species, the age-related declines caused by DEHP exposure may not be exclusive in C. elegans, leading to adverse human health consequences due to widespread and persistent DEHP contamination in the environment.
Показать больше [+] Меньше [-]Ozone exposure- and flux-yield response relationships for maize Полный текст
2019
Peng, Jinlong | Shang, Bo | Xu, Yansen | Feng, Zhaozhong | Pleijel, Håkan | Calatayud, Vicent
A stomatal ozone (O₃) flux-response relationship for relative yield of maize was established by parameterizing a Jarvis stomatal conductance model. For the function (fVPD) describing the limitation of stomatal conductance by vapor pressure deficit (VPD, kPa), cumulative VPD during daylight hours was superior to hourly VPD. The latter function is proposed as a methodological improvement of this multiplicative model when stomatal conductance peaks during the morning and it is reduced later as it is the case of maize in this experiment. The model agreed relatively well with the measured stomatal conductance (R² = 0.63). Based on the comparison of R² values of the response functions, POD₆ (Phytotoxic Ozone Dose over an hourly threshold 6 nmol m⁻² s⁻¹) and AOT40 (accumulated hourly O₃ concentrations over a threshold of 40 ppb) performed similarly. The critical levels based on POD₆ and AOT40 for 5% reduction in maize yield were 1.17 mmol m⁻² PLA and 8.70 ppm h, respectively. In comparison with other important crops, the ranking of sensitivity of maize strongly differed depending on the O₃ metric used, AOT40 or POD₆. The newly proposed response functions are relevant for O₃ risk assessment for this crop in Asia.
Показать больше [+] Меньше [-]Air pollution during the winter period and respiratory tract microbial imbalance in a healthy young population in Northeastern China Полный текст
2019
Li, Xinming | Sun, Ye | An, Yunhe | Wang, Ran | Lin, Hong | Liu, Min | Li, Shuyin | Ma, Mingyue | Xiao, Chunling
In order to investigate the relationship between air pollution and the respiratory tract microbiota, 114 healthy volunteers aged 18–21 years were selected during the winter heating period in Northeast China; 35 from a lightly polluted region (group A), 40 from a moderately polluted region (group B) and 39 from a heavily polluted region (group C). Microbial genome DNA was extracted from throat swab samples to study the oral flora composition of the volunteers by amplifying and sequencing the V3 regions of prokaryotic 16S rRNA. Lung function tests were also performed. The relative abundance of Bacteroidetes and Fusobacteria were significantly lower and Firmicutes Proteonacteria and Actinobacteria higher in participants from polluted regions. Within bacteria classes, Bacterioida abundance was lower and Clostridia abundance higher in polluted areas, which was also reflected in the order of abundance. In samples from region C, the abundance of Prevotellaceae, Veillonellaceae, Porphyromonadaceae, Fusobacteriaceae Paraprevollaceae and Flavobacteriaceae were lowest among the 3 regions studied, whereas the abundance of Lachnospiraceae and Ruminococcaceae were the highest. From group A to group C, the relative class abundances of Prevotella, Veillonella, Fusobacterium, Camphylobacter and Capnocytophaga Porphyromonas, Peptostreptococcus and Moraxella became lower in polluted areas.Pulmonary function correlated with air pollution and the oropharyngeal microbiota differed within regions of high, medium and low air pollution. Thus, during the winter heating period in Northeast China, the imbalance of the oropharyngeal microbiota might be caused by air pollution and is likely associated with impairment of lung function in young people.
Показать больше [+] Меньше [-]Target quantification of azole antifungals and retrospective screening of other emerging pollutants in wastewater effluent using UHPLC –QTOF-MS Полный текст
2019
Assress, Hailemariam Abrha | Nyoni, Hlengilizwe | Mamba, Bhekie B. | Msagati, Titus A.M.
The information acquired by high resolution quadrupole-time of flight mass spectrometry (QTOF-MS) allows target analysis as well as retrospective screening for the presence of suspect or unknown emerging pollutants which were not included in the target analysis. Targeted quantification of eight azole antifungal drugs in wastewater effluent as well as new and relatively simple retrospective suspect and non-target screening strategy for emerging pollutants using UHPLC-QTOF-MS is described in this work. More than 300 (parent compounds and transformation products) and 150 accurate masses were included in the retrospective suspect and non-target screening, respectively. Tentative identification of suspects and unknowns was based on accurate masses, peak intensity, blank subtraction, isotopic pattern (mSigma value), compound annotation using data bases such as KEGG and CHEBI, and fragmentation pattern interpretation. In the targeted analysis, clotrimazole, fluconazole, itraconazole, ketoconazole and posaconazole were detected in the effluent wastewater sample, fluconazole being with highest average concentration (302.38 ng L⁻¹). The retrospective screening resulted in the detection of 27 compounds that had not been included in the target analysis. The suspect compounds tentatively identified included atazanavir, citalopram, climbazole, bezafibrate estradiol, desmethylvenlafaxine, losartan carboxylic acid and cetirizine, of which citalopram, estradiol and cetirizine were confirmed using a standard. Carbamazepine, atrazine, efavirenz, lopinavir, fexofenadine and 5-methylbenzotriazole were among the compounds detected following the non-targeted screening approach, of which carbamazepine was confirmed using a standard. Given the detection of the target antifungals in the effluent, the findings are a call for a wide assessment of their occurrence in aquatic environments and their role in ecotoxicology as well as in selection of drug resistant fungi. The findings of this work further highlights the practical benefits obtained for the identification of a broader range of emerging pollutants in the environment when retrospective screening is applied to high resolution and high accuracy mass spectrometric data.
Показать больше [+] Меньше [-]