Уточнить поиск
Результаты 1231-1240 из 4,938
The climatology of aerosol optical thickness and radiative effects in Southeast Asia from 18-years of ground-based observations Полный текст
2019
Khan, Rehana | Kumar, Kanike Raghavendra | Zhao, Tianliang
The present study utilizes 18 years of long-term (2001–2018) data collected from six active AERONET sites over the Indo-Gangetic Plain (IGP) and the North China Plain (NCP) areas in Southeast Asia. The annual mean (±SD) aerosol optical thickness at 440 nm (AOT₄₄₀) was found high at XiangHe (0.92 ± 0.69) and Taihu (0.90 ± 0.51) followed by Beijing (0.81 ± 0.69), Lahore (0.81 ± 0.43), and Kanpur (0.73 ± 0.35) and low at Karachi (0.52 ± 0.23). Seasonally, high AOT₄₄₀ with corresponding high Ångström exponent (ANG₄₄₀₋₈₇₀) noticed during JJA for all sites, except Kanpur, suggesting the dominance of fine-mode particles, generally associated with large anthropogenic emissions. Climatologically, an increasing (decreasing) trend was observed over IGP (NCP) sites, with the highest (lowest) percentage of departures in AOT₄₄₀ found over Beijing (Karachi). We further identified major aerosol types which showed the dominance of biomass burning, urban-industrial followed by the mixed type of aerosols. In addition, single scattering albedo (SSA), asymmetry parameter (ASP), volume size distribution (VSD), and complex aerosol refractive index (RI) showed significant temporal and spectral changes, illustrating the complexity of aerosol types. At last, the annual mean direct aerosol radiative forcing at the top, bottom, and within the atmosphere for all sites were found in the range from −17.36 ± 3.75 to −45.17 ± 4.87 W m⁻², -64.6 ± 4.86 to −93.7 ± 10.27 W m⁻², and 40.5 ± 6.43 to 68.25 ± 7.26 W m⁻², respectively, with an averaged atmospheric heating rate of 0.9–2.3 K day⁻¹. A large amount of anthropogenic aerosols showed a significant effect of heating (cooling) on the atmosphere (surface) results obviously, due to an increased rate of atmospheric heating. Therefore, the thermodynamic effects of anthropogenic aerosols on the atmospheric circulation and its structure should be taken into consideration for future study over the experimental sites.
Показать больше [+] Меньше [-]A simple method for detecting and quantifying microplastics utilizing fluorescent dyes - Safranine T, fluorescein isophosphate, Nile red based on thermal expansion and contraction property Полный текст
2019
Lv, Lulu | Qu, Junhao | Yu, Zihua | Chen, Daihuan | Zhou, Chunxia | Hong, Pengzhi | Sun, Shengli | Li, Chengyong
Microplastics (particle size <5 mm) are an emerging contaminant for aquatic environmental, which have attracted increasing attention in worldwide range. In this study, an improved fluorescent staining method for detection and quantification of microplastics was developed based on thermal expansion and contraction. This method is effective in detection of polyethylene, polystyrene, polyvinyl chloride and polyethylene terephthalate plastic particles. In order to avoid error statistics caused by pretreatment, various characterizations of microplastics were measured after heated, such as microstructure, compositions and thermostability. The results showed that there was no significant damage to microplastics even under heating condition at 75 °C for 30 min, and the stained microplastics had strong stability for up to two months. Moreover, this method has been successfully applied to the quantification of microplastics in biological samples and result showed there were about 54 particles g⁻¹ (dry weight) microplastics in the Sipunculus nudus. This new method provides a reliable method for quantitative analysis of microplastics in environment and biological tissue.
Показать больше [+] Меньше [-]A rapid zebrafish embryo behavioral biosensor that is capable of detecting environmental β-blockers Полный текст
2019
Gauthier, Patrick T. | Vijayan, Mathilakath M.
β-Blockers (BB) are one of the most commonly prescribed pharmaceuticals used for treating cardiovascular and acute anxiety-related disorders. This class of drugs inhibit β-adrenoceptor signalling and given their growing, widespread use, BB are routinely detected in surface waters at nM concentrations. This is concerning as trace levels of BB impart developmental and reproductive dysfunction in non-target aquatic organisms, with potential for ecological risks. To date, environmental pharmaceutical risks to non-target animals are not part of the monitoring framework due to the lack of bioassays for assessing their biological effects. Behavioral endpoints have the advantage of a systems-level integration of multiple sensory signals and motor responses for toxicity screening; however, they are not currently used for risk assessment of environmental contaminants. The zebrafish (Danio rerio) embryo photomotor response (zfPMR) has been used in high-throughput behavioral screenings for neuroactive drug effects at high, therapeutic concentrations. Our objective here was to examine if we could utilize the zfPMR for screening environmental levels of BB. Embryos were placed into 96-well plates, exposed to chemicals and/or municipal wastewater effluent (MWWE), and their zfPMRs were measured with video-analysis. To specifically target BB, embryos were co-treated with isoproterenol, a β-adrenergic agonist that stimulates the zfPMR, and the inhibition of isoproterenol-induced response was used as a biomarker of BB exposure. Our results reveal that the inhibition of isoproterenol-stimulated zfPMRs can be used as a biosensor capable of detecting BB in the parts-per-billion to parts-per-trillion in water samples, including diluted MWWE. The method developed detects BB in spite of the presence of other neuroactive compounds in water samples. This systems level approach of rapid screening for BB effects provides the most promising evidence to date that behavioral neuromodulation can be potentially applied for environmental effects monitoring of pharmaceuticals.
Показать больше [+] Меньше [-]Per- and polyfluoroalkyl substances display structure-dependent inhibition towards UDP-glucuronosyltransferases Полный текст
2019
Liu, Yong-Zhe | Zhang, Zhi-Peng | Fu, Zhi-Wei | Yang, Kun | Ding, Ning | Hu, Li-Gang | Fang, Zhong-Ze | Zhuo, Xiaozhen
Per- and polyfluoroalkyl substances (PFASs) are a large group of chemicals and can be detected in environmental and human samples all over the world. Toxicity of existing and emerging PFASs will be a long-term source of concern. This study aimed to investigate structure-dependent inhibitory effects of 14 PFASs towards the activity of 11 UDP-glucuronosyltransferase (UGT) isoforms. In vitro UGTs-catalyzed glucuronidation of 4-methylumbelliferone (4-MU) was employed to determine the inhibition of PFASs towards different UGT isoforms. All the PFASs showed <75% of inhibition or stimulation effects on UGT1A3, UGT1A7, UGT1A9, UGT2B4, UGT2B7 and UGT2B17. However, PFASs showed broad inhibition on the activity of UGT1A1 and UGT1A8. The activity of UGT1A1 was inhibited by 98.8%, 98%, 79.9%, 77.1%, and 76.9% at 100 μmoL/L of perfluorodecanoic acid (PFDA), perfluorooctanesulfonic acid potassium salt (PFOS), perfluorotetradecanoic acid (PFTA), perfluorooctanoic acid (PFOA) and perfluorododecanoic acid (PFDoA), respectively. UGT1A8 was inhibited by 97.6%, 94.8%, 86.3%, 83.4% and 77.1% by PFDA, PFTA, perfluorooctadecanoic acid (PFOcDA), PFDoA and PFOS, respectively. Additionally, PFDA significantly inhibited UGT1A6 and UGT1A10 by 96.8% and 91.6%, respectively. PFDoA inhibited the activity of UGT2B15 by 88.2%. PFDA and PFOS exhibited competitive inhibition towards UGT1A1, and PFDA and PFTA showed competitive inhibition towards UGT1A8. The inhibition kinetic parameter (Kᵢ) were 3.15, 1.73, 13.15 and 20.21 μmoL/L for PFDA-1A1, PFOS-1A1, PFDA-1A8 and PFTA-1A8, respectively. The values were calculated to be 0.3 μmoL/L and 1.3 μmoL/L for the in vivo inhibition of PFDA towards UGT1A1-and UGT1A8-catalyzed metabolism of substances, and 0.2 μmoL/L and 2.0 μmoL/L for the inhibition of PFOS towards UGT1A1 and the inhibition of PFTA towards UGT1A8, respectively. Molecular docking indicated that hydrogen bonds and hydrophobic interactions contributed to the interaction between PFASs and UGT isoforms. In conclusion, exposure to PFASs might inhibit the activity of UGTs to disturb metabolism of endogenous compounds and xenobiotics. The structure-related effects of PFASs on UGTs would be very important for risk assessment of PFASs.
Показать больше [+] Меньше [-]Geochemical factors controlling the occurrence of high-fluoride groundwater in the western region of the Ordos basin, northwestern China Полный текст
2019
Su, He | Wang, Jiading | Liu, Jingtao
Hydrogeochemistry and isotope hydrology were carried out to investigate the spatial distribution of fluoride (F−) and the mechanisms responsible for its enrichment in the western region of the Ordos basin, northwestern China. Sixty-two groundwater samples from the unconfined aquifer and fifty-six from confined aquifer were collected during the pre-monsoon (June 2016). Over 77% of groundwater samples from the unconfined aquifer (F− concentration up to 13.30 mg/L) and approximately 66% from confined aquifer (with a maximum F− concentration of 3.90 mg/L) exhibit F− concentrations higher than the Chinese safe drinking limit (1.0 mg/L). High-F− groundwater presents a distinctive hydrochemical characteristic: a high pH value and HCO3− concentration with Ca-poor and Na-rich. Mineral dissolution (e.g., feldspar, calcite, dolomite, fluorite), cation exchange and evaporation in the aquifers predominate the formation of groundwater chemistry, which are also important for F− enrichment in groundwater. Mixing with unconfined groundwater is a significant mechanism resulting in the occurrence of high-F− groundwater in confined aquifer. These findings indicate that physicochemical processes play crucial roles in driving F− enrichment and that may be useful for studying F− occurrence in groundwater in arid and semi-arid areas.
Показать больше [+] Меньше [-]Associations between long-term exposure to ambient air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis Полный текст
2019
Liu, Feifei | Chen, Gongbo | Huo, Wenqian | Wang, Chongjian | Liu, Suyang | Li, Na | Mao, Shuyuan | Hou, Yitan | Lu, Yuanan | Xiang, Hao
Previous meta-analyses on associations between air pollution (AP) and type 2 diabetes mellitus (T2DM) were mainly focused on studies conducted in high-income countries. Evidence should be updated by including more recent studies, especially those conducted in low- and middle-income countries. We therefore conducted a systematic review and meta-analysis of epidemiological studies to conclude an updated pooled effect estimates between long-term AP exposure and the prevalence and incidence of T2DM. We searched PubMed, Embase, and Web of Science to identify studies regarding associations of AP with T2DM prevalence and incidence prior to January 2019. A random-effects model was employed to analyze the overall effects. A total of 30 articles were finally included in this meta-analysis. The pooled results showed that higher levels of AP exposure were significantly associated with higher prevalence of T2DM (per 10 μg/m3 increase in concentrations of particles with aerodynamic diameter < 2.5 μm (PM2.5): odds ratio (OR) = 1.09, 95% confidence interval (95%CI): 1.05, 1.13; particles with aerodynamic diameter < 10 μm (PM10): OR = 1.12, 95%CI: 1.06, 1.19; nitrogen dioxide (NO2): OR = 1.05, 95%CI:1.03, 1.08). Besides, higher level of PM2.5 exposure was associated with higher T2DM incidence (per 10 μg/m3 increase in concentration of PM2.5: hazard ratio (HR) = 1.10, 95%CI:1.04, 1.16), while the associations between PM10, NO2 and T2DM incidence were not statistically significant. The associations between AP exposure and T2DM prevalence showed no significant difference between high-income countries and low- and middle-incomes countries. However, different associations were identified between PM2.5 exposure and T2DM prevalence in different geographic areas. No significant differences were found in associations of AP and T2DM prevalence/incidence between females and males, except for the effect of NO2 on T2DM incidence. Overall, AP exposure was positively associated with T2DM. There still remains a need for evidence from low- and middle-income countries on the relationships between AP and T2DM.
Показать больше [+] Меньше [-]Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China Полный текст
2019
He, Lizhi | Zhong, Huan | Liu, Guangxia | Dai, Zhongmin | Brookes, Philip C. | Xu, Jianming
There are global concerns about heavy metal (HM) contamination in soils, which in turn has produced an increased demand for soil remediation. Biochar has been widely documented to effectively immobilize metals in contaminated soils and has received increasing attention for use in soil remediation. Here, we review recent progresses in understanding metal-biochar interactions in soils, potential risks associated with biochar amendment, and application of biochar in soil remediation in China. These recent studies indicate that: (1) the remediation effect depends on the characteristics of both biochar and soil and their interactions; (2) biochar applications could decrease the mobility/bioavailability of HMs in soils and HM accumulation in plants; and (3) despite its advantages, biochar applications could pose ecological and health risks, e.g., by releasing toxic substances into soils or by inhalation of biochar dust. Research gaps still exist in the development of practical methods for preparing and applying different biochars that target specific HMs. In the future, the long term effects and security of biochar applications on soil remediation, soil organisms and plant growth need to be considered.
Показать больше [+] Меньше [-]A less harmful system of preparing robust fabrics for integrated self-cleaning, oil-water separation and water purification Полный текст
2019
Yang, Maiping | Jiang, Chi | Liu, Weiqu | Liang, Liyan | Pi, Ke
Although the development of constructing oil-water separation materials is quick, the defects of using harmful regents, weak stability and single function still exist. Here, we report an effective and less-harmful system with poly-dimethylsiloxane (PDMS)/ZnO composite solution to fabricate robust superhydrophobic surfaces for oil-water separation and removal of organic pollutant. The obtained samples were characterized by a range of instruments. The water contact angle (WCA) of coated cotton was 155.6°, which attributed to the synergetic effect of low surface energy of PDMS and roughness of ZnO nanoparticles. The coated cotton was tolerant to mechanical damage, various corrosive solvents and temperature conditions. The emphasis of this study is the combination of superhydrophobicity and photocatalysis, resulting in multifunctional cotton with dual self-cleaning properties, outstanding oil-water separation ability and efficient water purification property. When utilized a simple laboratory facility, the cotton could separate water from oil-water mixture with a high efficiency (99.3%). Furthermore, the dyed water could be purified with coated cotton through photocatalysis under UV light and became colorless. Meanwhile, this mild and facile method could also be utilized to modify other porous substrates, such as PET, silk, non-woven and sponge. Therefore, the characteristics of environmental protection and easy operation make this cotton a desirable candidate for extensive applications in self-cleaning, oil-water separation and water purification.
Показать больше [+] Меньше [-]Emissions from a fast-pyrolysis bio-oil fired boiler: Comparison of health-related characteristics of emissions from bio-oil, fossil oil and wood Полный текст
2019
Sippula, Olli | Huttunen, Kati | Hokkinen, Jouni | Kärki, Sara | Suhonen, Heikki | Kajolinna, Tuula | Kortelainen, Miika | Karhunen, Tommi | Jalava, Pasi | Uski, Oskari | Yli-Pirilä, Pasi | Hirvonen, Maija-Riitta | Jokiniemi, Jorma
There is currently great interest in replacing fossil-oil with renewable fuels in energy production. Fast pyrolysis bio-oil (FPBO) made of lignocellulosic biomass is one such alternative to replace fossil oil, such as heavy fuel oil (HFO), in energy boilers. However, it is not known how this fuel change will alter the quantity and quality of emissions affecting human health. In this work, particulate emissions from a real-scale commercially operated FPBO boiler plant are characterized, including extensive physico-chemical and toxicological analyses. These are then compared to emission characteristics of heavy fuel-oil and wood fired boilers. Finally, the effects of the fuel choice on the emissions, their potential health effects and the requirements for flue gas cleaning in small-to medium-sized boiler units are discussed.The total suspended particulate matter and fine particulate matter (PM₁) concentrations in FPBO boiler flue gases before filtration were higher than in HFO boilers and lower or on a level similar to wood-fired grate boilers. FPBO particles consisted mainly of ash species and contained less polycyclic aromatic hydrocarbons (PAH) and heavy metals than had previously been measured from HFO combustion. This feature was clearly reflected in the toxicological properties of FPBO particle emissions, which showed less acute toxicity effects on the cell line than HFO combustion particles. The electrostatic precipitator used in the boiler plant efficiently removed flue gas particles of all sizes. Only minor differences in the toxicological properties of particles upstream and downstream of the electrostatic precipitator were observed, when the same particulate mass from both situations was given to the cells.
Показать больше [+] Меньше [-]Antibiotic resistance genes and bacterial communities in cornfield and pasture soils receiving swine and dairy manures Полный текст
2019
Chen, Zeyou | Zhang, Wei | Yang, Luxi | Stedtfeld, Robert D. | Peng, Anping | Gu, Cheng | Boyd, Stephen A. | Li, Hui
Land application of animal manure could change the profiles of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and bacterial communities in receiving soils. Using high-throughput real-time quantitative PCR and 16S rRNA amplicon sequencing techniques, this study investigated the ARGs and bacterial communities in field soils under various crop (corn and pasture) and manure (swine and dairy) managements, which were compared with those of two non-manured reference soils from adjacent golf course and grassland. In total 89 unique ARG subtypes were found in the soil samples and they conferred resistance via efflux pump, cellular protection and antibiotic deactivation. Compared to the ARGs in the golf course and grassland soils (28 and 34 subtypes respectively), manured soils generally had greater ARG diversity (36–55 subtypes). Cornfield soil frequently receiving raw swine manure had the greatest ARG abundance. The short-term (one week) application of composted and liquid swine manures increased the diversity and total abundance of ARGs in cornfield soils. Intriguingly the composted swine manure only marginally increased the total abundance of ARGs, but substantially increased the number of ARG subtypes in the cornfield soils. The network analysis revealed three major network modules in the co-occurrence patterns of ARG subtypes, and the hubs of these major modules (intl1-1, vanC, and pncA) may be candidates for selecting indicator genes for surveillance of ARGs in manured soils. The network analyses between ARGs and bacteria taxa revealed the potential host bacteria for the detected ARGs (e.g., aminoglycoside resistance gene aacC4 may be mainly carried by Acidobacteriaceae). Overall, this study highlighted the potentially varying impact of various manure management on antibiotic resistome and microbiome in cornfield and pasture soils.
Показать больше [+] Меньше [-]