Уточнить поиск
Результаты 1251-1260 из 7,240
Change in diagnostic ratios in expelled oils and residual extracts during semi-open pyrolysis experiments of an organic-rich shale
2022
Li, Zhongxuan | Huang, Haiping | Wang, Qianru | Zheng, Lunju
In order to investigate the effectiveness of diagnostic ratios in polycyclic aromatic hydrocarbon (PAH) source discrimination, semi-open pyrolysis experiments have been performed on an organic-rich, immature shale from the Winnipegosis Formation in southeastern Saskatchewan, Western Canada Sedimentary Basin. The concentrations and distributions of PAHs in expelled oils and residual extracts change drastically with increasing pyrolysis temperatures. The difficulty and inconsistency commonly encountered by using diagnostic ratios for PAH source identification in environmental samples seem to be rooted in the great variation of the diagnostic ratios themselves under different formation temperatures. No single diagnostic ratio allows a simple segregation of PAHs into petrogenic or pyrogenic sources. Some diagnostic ratios such as anthracene/phenanthrene and benz[a]anthracene/chrysene compound pairs are mostly effective for low-temperature pyrolysis, whereas indeno[1,2,3-cd]pyrene/benzo[ghi]perylene, aromatic hydrocarbon ring number distribution and degree of alkylation are mainly valid for high-temperature pyrolysis. The diagnostic ratios based on fluoranthene/pyrene, benzo[bk]fluoranthene/benz[a]pyrene compound pairs enjoy limited validity over a narrow pyrolysis range, whereas parameters derived from aromatic hydrocarbon ring number distribution, degree of alkylation and 1,7-/(2,6- + 1,7-dimentylphenanthrene) may be undistinguishable between petrogenesis and low-temperature pyrolysis. The apparent temperature-related variability must be taken into account when using the diagnostic ratios for source identification purposes. Multiple molecular markers need to be carefully selected to confirm the results obtained with PAH diagnostic ratios. Mechanical use of diagnostic ratios most likely leads to misinterpretation of environmental samples.
Показать больше [+] Меньше [-]Metagenomic analysis of microbial community structure and distribution of resistance genes in Daihai Lake, China
2022
Du, Caili | Yang, Fang | Li, Xiaoguang | Liao, Haiqing | Li, Zhonghong | Gao, Jiayue | Zhang, Lieyu
The emergence of resistance genes is a global phenomenon that poses a significant threat to both animals and humans. Lakes are important reservoirs of genes that confer resistant to antibiotics and metals. In this study, we investigated the distribution and diversity of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) in the sediment of Daihai Lake using high-throughput sequencing and metagenomic analysis. The results indicated that all sampling sites had similar bacterial community structures, with Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes being the most abundant. A total of 16 ARG types containing 111 ARG subtypes were deposited in the sediment. Among the resistance genes to bacitracin, multidrug, macrolide-lincosamide-streptogramin (MLS), tetracycline, beta-lactam, and sulfonamide were the dominant ARG types, accounting for 89.9–94.3% of the total ARGs. Additionally, 15 MRG types consisting of 146 MRG subtypes were identified. In all samples, MRGs of the same type presented resistance to Pb, Ni, Hg, W, Zn, Ag, Cr, Fe, As, Cu, and multimetals. Overall, the distribution and diversity of antibiotic and metal resistance genes showed no significant differences in the samples. Plasmids (91.03–91.82%) were the most dominant mobile genetic elements in the sediments of Daihai Lake. Network analysis indicated that the target ARGs and MRGs were significantly positively correlated with the microorganisms. Potential hosts for various ARGs and MRGs include Proteobacteria, Euryarchaeota, Actinobacteria, Chloroflexi, and Bacteroidetes.
Показать больше [+] Меньше [-]Pesticides in doormat and floor dust from homes close to treated fields: Spatio-temporal variance and determinants of occurrence and concentrations
2022
Figueiredo, Daniel | Nijssen, Rosalie | J.M. Krop, Esmeralda | Buijtenhuijs, Daan | Gooijer, Yvonne | Lageschaar, Luuk | Duyzer, Jan | Huss, Anke | Mol, Hans | C.H. Vermeulen, Roel
Indoor dust has been postulated as an important matrix for residential pesticide exposure. However, there is a lack of information on presence, concentrations and determinants of multiple pesticides in dust in residential homes close to treated fields. Our objective was to characterize the spatial and temporal variance of pesticides in house dust, study the use of doormats and floors as proxies for pesticides in indoor dust and identify determinants of occurrence and concentrations. Homes within 250 m from selected bulb fields were invited to participate. Homes within 20 km from these fields but not having agricultural fields within 500 m were selected as controls. House dust was vacuumed in all homes from floors (VFD) and from newly placed clean doormats (DDM). Sampling was done during two periods, when pesticides are used and not-used. For determination of 46 prioritized pesticides, a multi-residue extraction method was used. Most statistical analyses are focused on the 12 and 14 pesticides that were detected in >40% of DDM and VFD samples, respectively. Mixed models were used to evaluate relationships between possible determinants and pesticides occurrence and concentrations in DDM and VFD. 17 pesticides were detected in more than 50% of the homes in both matrixes. Concentrations differed by about a factor five between use and non-use periods among homes within 250 m of fields and between these homes and controls. For 7 pesticides there was a moderate to strong correlation (Spearman rho 0.30–0.75) between concentrations in DDM and VFD. Distance to agricultural fields and air concentrations were among the most relevant predictors for occurrence and levels of a given pesticide in DDM. Concentrations in dust are overall higher during application periods and closer to fields (<250 m) than further away. The omnipresence of pesticides in dust lead to residents being exposed all year round.
Показать больше [+] Меньше [-]The strategy for estrogen receptor mediated-risk assessment in environmental water: A combination of species sensitivity distributions and in silico approaches
2022
Lv, Xiaomei | Wu, Yicong | Chen, Guilian | Yu, Lili | Zhou, Yi | Yu, Yingxin | Lan, Shanhong | Hu, Junjie
Risk assessment for molecular toxicity endpoints of environmental matrices may be a pressing issue. Here, we combined chemical analysis with species sensitivity distributions (SSD) and in silico docking for multi-species estrogen receptor mediated-risk assessment in water from Dongjiang River, China. The water contains high levels of phenolic endocrine-disrupting chemicals (PEDCs) and phthalic acid esters (PAEs). The concentration of ∑₄PEDCs and ∑₆PAEs ranged from 2202 to 3404 ng/L and 834–4368 ng/L, with an average of 3241 and 2215 ng/L, respectively. The SSD approach showed that 4-NP, BPA, E2 of PEDCs, and DBP, DOP, and DEHP could severely threaten the aquatic ecosystems, while most other target compounds posed low-to-medium risks. Moreover, binding affinities from molecular docking among PEDCs, PAEs, and estrogen receptors (ERα, Erβ, and GPER) were applied as toxic equivalency factors. Estrogen receptor-mediated risk suggested that PEDCs were the main contributors, containing 53.37–69.79% of total risk. They potentially pose more severe estrogen-receptor toxicity to zebrafish, turtles, and frogs. ERβ was the major contributor, followed by ERα and GPER. This study is the first attempt to assess the estrogen receptor-mediated risk of river water in multiple aquatic organisms. The in silico simulation approach could complement toxic effect evaluations in molecular endpoints.
Показать больше [+] Меньше [-]Abnormal neurotransmission of GABA and serotonin in Caenorhabditis elegans induced by Fumonisin B1
2022
Zhang, Xiaojuan | Ye, Yongli | Sun, Jiadi | Wang, Jia-Sheng | Tang, Lili | Xu, Yida | Ji, Jian | Sun, Xiulan
Fumonisin B1 (FB1) is a neurodegenerative mycotoxin synthesized by Fusarium spp., but the potential neurobehavioral toxicity effects in organisms have not been characterized clearly. Caenorhabditis elegans (C. elegans) has emerged as a promising model organism for neurotoxicological studies due to characteristics such as well-functioning nervous system and rich behavioral phenotypes. To investigate whether FB1 has neurobehavioral toxicity effects on C. elegans, the motor behavior, neuronal structure, neurotransmitter content, and gene expression related with neurotransmission of C. elegans were determined after exposed to 20–200 μg/mL FB1 for 24 h and 48 h, respectively. Results showed that FB1 caused behavioral defects, including body bends, head thrashes, crawling distance, mean speed, mean amplitude, mean wavelength, foraging behavior, and chemotaxis learning ability in a dose-, and time-dependent manner. In addition, when C. elegans was exposed to FB1 at a concentration of 200 μg/mL for 24 h and above 100 μg/mL for 48 h, the GABAergic and serotonergic neurons were damaged, but no effect on dopaminergic, glutamatergic, and cholinergic neurons. The relative content of GABA and serotonin decreased significantly. Furthermore, abnormal expression of mRNA levels associated with GABA and serotonin were found in nematodes treated with FB1, such as unc-30, unc-47, unc-49, exp-1, mod-5, cat-1, and tph-1. The neurobehavioral toxicity effect of FB1 may be mediated by abnormal neurotransmission of GABA and serotonin. This study provides useful information for understanding the neurotoxicity of FB1.
Показать больше [+] Меньше [-]Negative food dilution and positive biofilm carrier effects of microplastic ingestion by D. magna cause tipping points at the population level
2022
Amariei, Georgiana | Rossal S., J. Roberto (Julio Roberto Rossal Salazar) | Fernández-Piñas, Francisca | Koelmans, Albert A.
Ingestion of microplastics by aquatic organisms is often harmful due to the dilution of their regular food with low-calorie microplastic particles, but can also be beneficial if nutritious biofilms are present on the microplastic surface. This begs the question: is ingestion of microplastic harmful or beneficial and can the net effect of the two mechanisms be quantified? Here, we quantified these harmful and beneficial effects on Daphnia magna, using dose-response tests with clean and biofouled microplastic respectively, and determined the trade-off between these counteracting effects. A population model was developed to calculate the isoclines for zero population growth, separating the regime where adverse food dilution dominated from that where the beneficial biofilm vector mechanism dominated. Our results show that the organisms grew better when exposed to biofouled microplastic compared to pristine microplastic. Very good model predictions (R² = 0.868–0.991) of the effects of biofouled microplastic were obtained based on literature parameter values, with optimization required only for the two sub-model parameters driving the dose-effect relationships for pristine microplastic. These results contradict previous sudies were only pristine microplastic were used and demonstrate that the ruling paradigm of unambiguously adverse microplastic effects is not ecologically justifiable.
Показать больше [+] Меньше [-]Nitrate source apportionment and risk assessment: A study in the largest ion-adsorption rare earth mine in China
2022
Zhang, Qiuying | Shu, Wang | Li, Fadong | Li, Ming | Zhou, Jun | Tian, Chao | Liu, Shanbao | Ren, Futian | Chen, Gang
Nitrate (NO₃⁻) pollution in water bodies has received widespread attention, but studies on nitrogen transformation and pollution risk assessment are still limited, especially in rare earth mining areas. In this study, surface and groundwater samples were collected from the largest rare earth mining site in southern China, and analyzed for the hydrochemical and stable isotopic characteristics. The results showed that the NO₃⁻ concentrations ranged from 1.61 to 453.11 mg/L, with 35% of surface water and 53.3% of groundwater samples exceeding the WHO standard (i.e., 50 mg/L). Health risk assessment showed that 31.4% of the water samples had a moderate to high non-carcinogenic risk, and the high-risk areas were concentrated in rare earth mining regions. Additionally, adults were more vulnerable to the non-carcinogenic health risks than children. The high variability of δ¹⁵N–NO₃⁻ (from −6.43 to 17.09‰) and δ¹⁸O–NO₃⁻ (from −7.91 to 22.79‰) showed that NO₃⁻ was influenced by multiple nitrogen sources and transformation processes. Hydrochemistry and isotopic evidence further indicated that NO₃⁻ was primarily influenced by nitrification and hydraulic connection between surface and groundwater. The results of the Bayesian mixing model showed that about 70% of NO₃⁻ originated from mine drainage and soil N in the rare earth mining area, while more than 90% of NO₃⁻ originated from fertilizer, soil N, and manure and sewage in rural and urban areas in the middle and downstream. This study suggests reducing anthropogenic nitrogen discharge (e.g., leaching agents and fertilizer inputs) as the primary means of NO₃⁻ pollution control with biogeochemical processes (e.g., denitrification) to further reduce its pollution.
Показать больше [+] Меньше [-]Microplastics-perturbed gut microbiota triggered the testicular disorder in male mice: Via fecal microbiota transplantation
2022
Wen, Siyue | Zhao, Yu | Liu, Shanji | Yuan, Hongbin | You, Tao | Xu, Hengyi
Microplastics (MPs), an emerging environmental pollutant, have been clarified to induce testicular disorder in mammals. And the current studies have delineated a correlation between gut microbiota and male reproduction. However, it's still unclear whether gut microbiota gets involved in MPs-induced reproductive toxicity. In this work, we constructed a mouse model drinking 5 μm polystyrene-MPs (PS-MPs) at the concentrations of 100 μg/L and 1000 μg/L for 90 days. Evident histological damage, spermatogenetic disorder and hormones synthesis inhibition were observed in PS-MPs exposed mice. With fecal microbiota transplantation (FMT) trial, the recipient mice exhibited gut microbial alteration, and the elevated abundance of Bacteroides and Prevotellaceae_UCG-001 were positively correlated with testicular disorder according to spearman correlation analysis. Mechanistically, increased proportion of pro-inflammatory bacteria may drive translocation of T helper 17 (Th17) cells, resulting in overproduced interleukin (IL)-17 A and downstream inflammatory response in both the mice exposed to PS-MPs and corresponding recipient mice. In summary, our findings revealed the critical role of gut microbiota in PS-MPs-induced reproductive toxicity, and tried to elucidate the underlying mechanism of gut microbial dysregulation-mediated IL-17 A signaling pathway. Furthermore, this study also provides the research basis for gut microbiota-targeted treatment of male infertility in the future.
Показать больше [+] Меньше [-]Thermodynamic and kinetic modeling the interaction of goethite-ligand-metal ternary system
2022
Li, Zipeng | Zhao, Xiaopeng | Gu, Xueyuan
Low-molecular-weight organic acids may significantly influence the mobility of metal in environment, but the kinetics are not fully understood and have not been quantified. In this study, the thermodynamic and kinetic effects of citric acid (CA) on the adsorption of Cd(II) and Ni(II) on goethite were investigated using batch-adsorption and stirred-flow experiments. A charge distribution and multisite complexation model (CD-MUSIC) and a thermodynamically based multi-rate kinetic model were employed to describe the adsorption behaviors. Two ternary surface complexes, (≡FeO)₂CitMe and (≡FeOH)₂MeCit²⁻, were involved in the adsorption. In addition, CA differed in its effects on Cd(II) and Ni(II) adsorption, enhancing Cd(II) adsorption but inhibiting Ni(II) adsorption at high levels. Kinetically, in the presence of CA, the adsorption of Cd(II) was faster than that of Ni(II). Increasing CA concentration led to faster Cd(II) adsorption, but resulted in the dissolution of the adsorbed Ni(II), possibly due to the much higher complexation constants of Ni-CA than of Cd-CA in aqueous phase. This finding implied that, in the rhizosphere, high level of CA may lead to more dissolution of Ni(II) than Cd(II); while in acidic ferrosol, CA may alleviate Cd(II) mobility and toxicity. The proposed mechanistic model sheds light on ion partition in the soil environment and may improve predictions thereof.
Показать больше [+] Меньше [-]Impacts of emergency health protection measures upon air quality, traffic and public health: evidence from Oxford, UK
2022
Singh, Ajit | Bartington, Suzanne E. | Song, Congbo | Ghaffarpasand, Omid | Kraftl, Martin | Shi, Zongbo | Pope, Francis D. | Stacey, Brian | Hall, James | Thomas, G Neil | Bloss, William J. | Leach, Felix C.P.
Emergency responses to the COVID-19 pandemic led to major changes in travel behaviours and economic activities in 2020. Machine learning provides a reliable approach for assessing the contribution of these changes to air quality. This study investigates impacts of health protection measures upon air pollution and traffic emissions and estimates health and economic impacts arising from these changes during two national ‘lockdown’ periods in Oxford, UK. Air quality improvements were most marked during the first lockdown with reductions in observed NO₂ concentrations of 38% (SD ± 24.0%) at roadside and 17% (SD ± 5.4%) at urban background locations. Observed changes in PM₂.₅, PM₁₀ and O₃ concentrations were not significant during first or second lockdown. Deweathering and detrending analyses revealed a 22% (SD ± 4.4%) reduction in roadside NO₂ and 2% (SD ± 7.1%) at urban background with no significant changes in the second lockdown. Deweathered-detrended PM₂.₅ and O₃ concentration changes were not significant, but PM₁₀ increased in the second lockdown only. City centre traffic volume reduced by 69% and 38% in the first and second lockdown periods. Buses and passenger cars were the major contributors to NO₂ emissions, with relative reductions of 56% and 77% respectively during the first lockdown, and less pronounced changes in the second lockdown. While car and bus NO₂ emissions decreased during both lockdown periods, the overall contribution from buses increased relative to cars in the second lockdown. Sustained NO₂ emissions reduction consistent with the first lockdown could prevent 48 lost life-years among the city population, with economic benefits of up to £2.5 million. Our findings highlight the critical importance of decoupling emissions changes from meteorological influences to avoid overestimation of lockdown impacts and indicate targeted emissions control measures will be the most effective strategy for achieving air quality and public health benefits in this setting.
Показать больше [+] Меньше [-]