Уточнить поиск
Результаты 1261-1270 из 7,288
Occurrence and distribution of organophosphate flame retardants in seawater and sediment from coastal areas of the East China and Yellow Seas Полный текст
2022
Fang, Lidan | Liu, Aifeng | Zheng, Minggang | Wang, Ling | Hua, Yi | Pan, Xin | Xu, Hongyan | Chen, Xiangfeng | Lin, Yongfeng
Organophosphates (OPEs) are manmade organic pollutants that are widely used as flame retardants, plasticizers, and antifoaming and hydraulic agents. In this study, seven OPEs in seawater and sediment from the Yellow Sea and East China Sea were determined to study the distribution and diffusion behavior, and to evaluate the environmental risks. The ΣOPEs in the seawater and sediments ranged from below the method detection limit (<MDL) to 497.40 ng/L and from < MDL to 66.50 ng/g dw, respectively. Tri-n-butyl phosphate (TnBP), tris-(1, 3-Dichloro-2-Propyl) phosphate (TDCPP), and tri-meta-cresyl phosphate (TmCP) were the dominant OPEs in the seawater and sediments. OPEs were mainly distributed in coastal areas and the South Yellow Sea, indicating that they are mainly affected by land-based pollution and ocean currents. Fugacity analysis shows that tri-para-cresyl phosphate (TpCP) was in a state of equilibrium, while TDCPP, TnBP, and TmCP other OPEs tended to diffuse from sediment to water. The diffusion behavior of OPEs is mainly affected by their chemical properties. Hazard quotient (HQ) values of TmCP and TpCP in sediment samples were >1.0, indicating high ecological risks to aquatic organisms.
Показать больше [+] Меньше [-]Risk assessment of the exposure of Spanish children to acrylamide using human biomonitoring Полный текст
2022
Fernández, Sandra F. | Pardo, Olga | Coscollà, Clara | Yusà, Vicent
Acrylamide (AA) is an organic contaminant that naturally forms in starchy foods during high-temperature cooking under low-moisture conditions. It is mainly produced from the sugars and amino acids present in food by the Maillard reaction. When humans are exposed to AA, AA is eliminated in the urine as mercapturic acid conjugates, primarily including N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA), N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA3), and N-acetyl-3-[(3-amino-3-oxopropyl)sulfinyl]-L-alanine (AAMA-Sul), which are used as exposure biomarkers of AA in human biomonitoring studies. Although the carcinogenic effects of AA on humans have not been demonstrated yet, some studies have shown that AA may negatively affect children's health. The main objective of this study was to evaluate the exposure of Spanish children (n = 612) to AA. For this purpose, the levels of AAMA, AAMA-Sul, and GAMA3 in first-morning urine samples were analyzed by “dilute and shoot” and liquid chromatography coupled to tandem mass spectrometry. The three metabolites were detected in all the children involved in this study in the following order (geometric mean (GM)): AAMA (79 ng ml⁻¹) > AAMA-Sul (28 ng ml⁻¹) > GAMA3 (18 ng ml⁻¹). Statistical analysis suggested that the intake of fried potato products and biscuits could be associated with higher levels of AA metabolites in urine. Estimated daily intakes of AA in the children under study were in the range of 1.2–1.5 μg AA·kg-body weight⁻¹·day⁻¹ (GM). Risk assessment calculations indicate that the health risk of AA exposure cannot be overlooked and the exposure of Spanish children to AA should be closely monitored.
Показать больше [+] Меньше [-]Legacy and novel brominated flame retardants in air of Ny-Ålesund, Arctic from 2011 to 2019 Полный текст
2022
Xiong, Siyuan | Hao, Yanfen | Fu, Jianjie | Wang, Pu | Yang, Ruiqiang | Pei, Zhiguo | Li, Yingming | Li, An | Zhang, Qinghua | Jiang, Guibin
Concentrations of polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs) in the atmosphere of Ny-Ålesund, Svalbard, were investigated. Passive air samples were collected for eight consecutive one-year periods from August 2011 to August 2019 at seven Arctic sampling sites. High-resolution gas chromatography coupled with high-resolution mass spectrometry (HRGC-HRMS) and gas chromatography coupled with election capture negative ionization mass spectrometry (GC-NCI-MS) were employed for PBDE and NBFR analysis, respectively. The median concentrations of Ʃ₁₁PBDEs and Ʃ₆NBFRs were 0.6 pg/m³ and 4.0 pg/m³, respectively. Hexabromobenzene and BDE-47 were the most abundant NBFR and PBDE congeners in the atmosphere, accounting for 31% and 24% of ƩNBFR and ƩPBDE concentrations, respectively. ƩNBFR concentration was approximately six times higher than that of ƩPBDEs in the same samples. Among NBFRs, the concentrations of 1,2,3,4,5-pentabromobenzene, 2,3,4,5,6-pentabromobenzene, and 2,3-dibromopropyl-2,4,6-tribromophenyl ether showed increasing temporal variations, with estimated doubling times of 3.0, 3.3, and 2.8 years, respectively. The concentrations of almost all PBDE congeners showed a decreasing variation, with halving times ranging from 2.1 to 9.5 years.
Показать больше [+] Меньше [-]Characteristics and source apportionment of particulate carbon in precipitation based on dual-carbon isotopes (13C and 14C) in Xi'an, China Полный текст
2022
Niu, Zhenchuan | Huang, Zhipu | Wang, Sen | Feng, Xue | Wu, Shugang | Zhao, Huiyizhe | Lu, Xuefeng
Wet deposition is a dominant removal pathway of carbonaceous particles from the atmosphere, but few studies have assessed the particulate carbon in precipitation in Chinese cities. To assess the characteristics and sources of particulate carbon, we measured the concentrations, fluxes, stable carbon isotopes, and radiocarbon of particulate carbon, and some cations concentrations in precipitation in Xi'an, China, in 2019. In contrast to rainfall samples, particulate carbon in snowfall samples in Xi'an showed extremely high concentrations and wet deposition fluxes. The concentrations as well as wet deposition fluxes showed no significant (p > 0.05) differences between urban and suburban sites, and they also exhibited low seasonality in rainfall samples. Water-insoluble organic carbon (WIOC) accounted for the majority (∼90%) of the concentrations and wet deposition fluxes of water-insoluble total carbon (WITC) in precipitation. The best estimates of source apportionment of WITC in precipitation showed that biological sources were the main contributor (80.0% ± 10.5%) in summer, and their contributions decreased to 47.3% ± 12.8% in winter. The contribution of vehicle exhaust emissions accounted for 11.7% ± 3.5% in summer and 39.0% ± 4.3% in winter, while the contributions of coal combustion were relatively small in summer (8.3% ± 7.0%) and winter (13.8% ± 8.5%). Biomass burning accounted for 25.7% ± 9.3% and 89.9% ± 0.7% of the biological sources in summer and winter, respectively, with the remainder comprising other sources of contemporary carbon. These results highlight the nonnegligible contributions of biogenic emissions and biomass burning to particulate carbon in precipitation in this city in summer and winter, respectively.
Показать больше [+] Меньше [-]Effect of CO2 driven ocean acidification on the mud crab Scylla serrata instars Полный текст
2022
Thangal, Said Hamid | Muralisankar, Thirunavukkarasu | Anandhan, Krishnan | Gayathri, Velusamy | Yogeshwaran, Arumugam
The decreasing ocean pH seems to adversely affect marine organisms, including crustaceans, which leads to potential threats to seafood safety. The present investigation evaluated the effect of seawater acidification on the edible marine mud crab Scylla serrata instars. The experimental setup was designed using a multi-cell cage based system assembled with 20 pre holed PVC pipes containing 20 individual crabs to avoid cannibalism. The crab instars were exposed to CO₂ driven acidified seawater at pH 7.8 (IPCC forecast pH at the end of the 21ˢᵗ century), 7.6, 7.4, 7.2, and 7.0 for 60 days. The crabs reared in seawater without acidification at pH 8.2 served as control. The present study revealed a notable decrease in survival, feed intake, growth, molting, tissue biochemical constituents, minerals, chitin, and alkaline phosphatase in S. serrata instar reared in acidified seawater, denotes the adverse effect of seawater acidification on crabs. The significant elevations in antioxidants, lipid peroxidation, and metabolic enzymes in all acidified seawater compared to ambient pH indicates the physiological stress of the crabs' instars. The changes in the metabolic enzymes reveal the metabolism of protein and glucose for additional energy required by the crabs to tolerate the acidic stress. Hence, the present study provides insight into the seawater acidification can adversely affect the crab S. serrata.
Показать больше [+] Меньше [-]Inequalities in occupational exposures among people using popular commute modes Полный текст
2022
Patra, Arpan | Phuleria, Harish C.
Several recent studies have looked into the differences in air qualities inside popular commute modes. The impact of daily commuting patterns and work-related trips on inhalation doses, however, are not investigated. The purpose of this study is to quantify the variation in air pollutants within popular commute modes in Mumbai, India, and to estimate the variation in exposure as a result of occupational or work-related trips across different sub-groups. Real-time pollutants, both gaseous and particulate matters (PM), were measured on a pre-defined route during rush and non-rush hours on buses, cars, auto-rickshaws, sub-urban trains, and motorbikes through several trips (N = 98). Household surveys were conducted to estimate the exposures of different occupational subgroups (cab-driver, auto-rickshaw drivers, delivery persons) and people commuting to their offices daily. Participants (N = 800) from various socioeconomic backgrounds in the city were asked about their job categories, work-activity patterns, and work-related commute trips. Mass concentrations of particles in different size ranges (PM₁, PM₂.₅, and PM₁₀) were substantially higher (p < 0.05) inside auto-rickshaws (44.6 μg/m³, 84.7 μg/m³, and 138.3 μg/m³) compared to other modes. Inside cars, gaseous pollutants such as carbon monoxide (CO) and total volatile organic compounds (TVOC) were significantly higher (p < 0.05). Although both gaseous and particulate concentrations were lower (p < 0.05) inside buses, bus-commuters were found to be highly exposed to the pollutants due to the extended trip time (∼1.2 times longer than other modes) and driving conditions. Office commuters inhale a large fraction of their daily doses (25–30%) during their work-related travel. Occupational sub-groups, on the other hand, inhale ∼90% of the pollutants during their work. In a day, an auto-rickshaw driver inhales 10–15% more (p < 0.05) pollutants than cab driver or delivery personnel. Therefore, this study highlights the inequalities in occupational exposure as a combined effect of in-cabin air qualities and commute patterns due to occupational obligations.
Показать больше [+] Меньше [-]Characterization of anthropogenic marine macro-debris affecting coral habitat in the highly urbanized seascape of Mumbai megacity Полный текст
2022
De, Kalyan | Sautya, Sabyasachi | Gaikwad, Santosh | Mitra, Aditi | Nanajkar, Mandar
Marine debris has become a major form of pollution and a serious ecosystem health concern. The present study evaluates the accumulation, origin, and fate of debris in intertidal coral habitats of Mumbai-one of the world's highly populated coastal cities on the west coast of India. Predominantly, seven hermatypic coral species belonging to seven genera and five families were identified and mainly represented by Pseudosidastrea, Porites, and Bernardpora. In terms of number, the mean density of marine debris was 1.60 ± 0.13 SE items/m², which is higher than the global average. The mean density of plastic debris was 1.46 ± 0.14 SE items/m². Approximately 9% of total coral colonies were in physical contact with debris, and 22% of these colonies showed visible signs of partial bleaching. Single use plastic bags and wrappers were dominant plastic debris. The study area was characterized as ‘very poor cleanliness’ according to the Beach Quality Indexes, which include the Clean Coast Index, General Index, and Hazardous Items Index. The numerical model indicates the influence of river discharge and probable areas of plastic accumulation with high tidal currents in this region, maneuvering the spatial advection of litter in the nearshore areas. Combined analysis of ground-truthing and model simulation implies that the possible contributing sources of litter were representatives of land-based and sea-originated. The overall results point to increasing anthropogenic stressors threatening coastal coral communities, including marine debris pollution. It is advocated to adopt an integrated coastal zone management approach supported by coordinated policy frameworks could guide the mitigation of the debris footprint in coastal environments.
Показать больше [+] Меньше [-]Use of molecular imprinted polymers as sensitive/selective luminescent sensing probes for pesticides/herbicides in water and food samples Полный текст
2022
Kumar, Vanish | Kim, Ki Hyun
As non-biological molecules, molecular imprinted polymers (MIPs) can be made as antibody mimics for the development of luminescence sensors for various targets. The combination of MIPs with nanomaterials is further recognized as a useful option to improve the sensitivity of luminescence sensors. In this work, the recent progresses made in the fabrication of fluorescence, phosphorescence, chemiluminescence, and electrochemiluminescence sensors based on such combination have been reviewed with emphasis on the detection of pesticides/herbicides. Accordingly, the materials that are most feasible for the detection of such targets are recommended based on the MIP technologies.
Показать больше [+] Меньше [-]Combining Himawari-8 AOD and deep forest model to obtain city-level distribution of PM2.5 in China Полный текст
2022
Song, Zhihao | Chen, Bin | Huang, Jianping
PM₂.₅ (fine particulate matter with aerodynamics diameter <2.5 μm) is the most important component of air pollutants, and has a significant impact on the atmospheric environment and human health. Using satellite remote sensing aerosol optical depth (AOD) to explore the hourly ground PM₂.₅ distribution is very helpful for PM₂.₅ pollution control. In this study, Himawari-8 AOD, meteorological factors, geographic information, and a new deep forest model were used to construct an AOD-PM₂.₅ estimation model in China. Hourly cross-validation results indicated that estimated PM₂.₅ values were consistent with the site observation values, with an R² range of 0.82–0.91 and root mean square error (RMSE) of 8.79–14.72 μg/m³, among which the model performance reached the optimum value between 13:00 and 15:00 Beijing time (R² > 0.9). Analysis of the correlation coefficient between important features and PM₂.₅ showed that the model performance was related to AOD and affected by meteorological factors, particularly the boundary layer height. Deep forest can detect diurnal variations in pollutant concentrations, which were higher in the morning, peaked at 10:00–11:00, and then began to decline. High-resolution PM₂.₅ concentrations derived from the deep forest model revealed that some cities in China are seriously polluted, such as Xi ‘an, Wuhan, and Chengdu. Our model can also capture the direction of PM₂.₅, which conforms to the wind field. The results indicated that due to the combined effect of wind and mountains, some areas in China experience PM₂.₅ pollution accumulation during spring and winter. We need to be vigilant because these areas with high PM₂.₅ concentrations typically occur near cities.
Показать больше [+] Меньше [-]Anthropogenic air pollutants reduce insect-mediated pollination services Полный текст
2022
Ryalls, James M.W. | Langford, Ben | Mullinger, Neil J. | Bromfield, Lisa M. | Nemitz, Eiko | Pfrang, Christian | Girling, Robbie D.
Anthropogenic air pollutants reduce insect-mediated pollination services Полный текст
2022
Ryalls, James M.W. | Langford, Ben | Mullinger, Neil J. | Bromfield, Lisa M. | Nemitz, Eiko | Pfrang, Christian | Girling, Robbie D.
Common air pollutants, such as nitrogen oxides (NOₓ), emitted in diesel exhaust, and ozone (O₃), have been implicated in the decline of pollinating insects. Reductionist laboratory assays, focused upon interactions between a narrow range of flowering plant and pollinator species, in combination with atmospheric chemistry models, indicate that such pollutants can chemically alter floral odors, disrupting the cues that foraging insects use to find and pollinate flowers. However, odor environments in nature are highly complex and pollination services are commonly provided by suites of insect species, each exhibiting different sensitivities to different floral odors. Therefore, the potential impacts of pollution-induced foraging disruption on both insect ecology, and the pollination services that insects provide, are currently unknown. We conducted in-situ field studies to investigate whether such pollutants could reduce pollinator foraging and as a result the pollination ecosystem service that those insects provide. Using free-air fumigation, we show that elevating diesel exhaust and O₃, individually and in combination, to levels lower than is considered safe under current air quality standards, significantly reduced counts of locally-occurring wild and managed insect pollinators by 62–70% and their flower visits by 83–90%. These reductions were driven by changes in specific pollinator groups, including bees, flies, moths and butterflies, and coincided with significant reductions (14–31%) in three different metrics of pollination and yield of a self-fertile test plant. Quantifying such effects provides new insights into the impacts of human-induced air pollution on the natural ecosystem services upon which we depend.
Показать больше [+] Меньше [-]Anthropogenic air pollutants reduce insect-mediated pollination services Полный текст
2022
Ryalls, James | Langford, Ben | Mullinger, Neil | Bromfield, Lisa | Nemitz, Eiko | Pfrang, Christian | Girling, Robbie
Common air pollutants, such as nitrogen oxides (NOx), emitted in diesel exhaust, and ozone (O3), have been implicated in the decline of pollinating insects. Reductionist laboratory assays, focused upon interactions between a narrow range of flowering plant and pollinator species, in combination with atmospheric chemistry models, indicate that such pollutants can chemically alter floral odors, disrupting the cues that foraging insects use to find and pollinate flowers. However, odor environments in nature are highly complex and pollination services are commonly provided by suites of insect species, each exhibiting different sensitivities to different floral odors. Therefore, the potential impacts of pollution-induced foraging disruption on both insect ecology, and the pollination services that insects provide, are currently unknown. We conducted in-situ field studies to investigate whether such pollutants could reduce pollinator foraging and as a result the pollination ecosystem service that those insects provide. Using free-air fumigation, we show that elevating diesel exhaust and O3, individually and in combination, to levels lower than is considered safe under current air quality standards, significantly reduced counts of locally-occurring wild and managed insect pollinators by 62 to 70% and their flower visits by 83 to 90%. These reductions were driven by changes in specific pollinator groups, including bees, flies, moths and butterflies, and coincided with significant reductions (14-31%) in three different metrics of pollination and yield of a self-fertile test plant. Quantifying such effects provides new insights into the impacts of human-induced air pollution on the natural ecosystem services upon which we depend.
Показать больше [+] Меньше [-]