Уточнить поиск
Результаты 1271-1280 из 6,560
Elevated mercury concentrations in biota despite reduced sediment concentrations in a contaminated coastal area, Harboøre Tange, Denmark Полный текст
2020
Bjerregaard, Poul | Schmidt, Torben Grau | Mose, Maria Pedersen
Metals sequestered in coastal sediments are normally considered to be stable, but this investigation shows – somewhat surprisingly – that mercury concentrations in a previously contaminated area, Harboøre Tange, Denmark, have decreased since the 1980s. Mercury concentrations were determined in sediment and benthic biota and present values were compared to values in the 1980s and values from areas without known; history of mercury contamination. Concentrations in both the upper 20 cm of the sediments and; biota are considerably lower now compared to latest monitoring (1980s). Sediment.concentrations at most locations have decreased from the 100–300 ng Hg g⁻¹ dry weight (dw) level to levels below the Background Concentration (BC) of 50 ng Hg g⁻¹ dw defined by Oslo-Paris Convention for the Protection of the Marine Environment of the North-East Atlantic; some stations are at the 2–10 ng Hg g⁻¹ dw level characteristic of Danish coastal sediments with no known history of mercury contamination. Concentrations of mercury in the benthic biota along Harboøre Tange have also decreased since the 1980s but despite the lowered mercury concentrations in the sediments, concentrations in most samples of benthic invertebrate fauna still exceed those in uncontaminated coastal areas and also the Environmental Quality Standard (EQS) of 20 ng Hg g⁻¹ wet weight (≈100 ng Hg g⁻¹ dry weight) defined by the European Union’s Water Framework Directive. Concentration ranges in selected organisms are: (Harboøre Tange l980s/Harboøre Tange now/uncontaminated areas - given in ng Hg g⁻¹ dw): Periwinkles Littorina littorea 9000/150–450/55-77, blue mussels Mytilus edulis up to 9000/300–500/40–170, cockles Cerastoderma edule up to 8000/400–1200/200, brown shrimp Crangon crangon 700–2200/150-450/47, eelgrass Zostera marina up to 330/25–70/12. The present results - together with a literature review - show that a simple and straight forward relationship between the concentrations of mercury in sediment and benthic organisms does not necessarily exist.
Показать больше [+] Меньше [-]Characteristics of spatial and seasonal bacterial community structures in a river under anthropogenic disturbances Полный текст
2020
Ouyang, Liao | Chen, Huirong | Liu, Xinyue | Wong, Ming Hung | Xu, Fangfang | Yang, Xuewei | Xu, Wang | Zeng, Qinghuai | Wang, Weimin | Li, Shuangfei
In this study, the seasonal characteristics of microbial community compositions at different sites in a river under anthropogenic disturbances (Maozhou River) were analyzed using Illumina HiSeq sequencing. Taxonomic analysis revealed that Proteobacteria was the most abundant phylum in all sites, followed by Actinobacteria, Bacteroidetes, Chloroflexi, Acidobacteria and Firmicutes. The variations of the community diversities and compositions between the seasons were not significant. However, significant differences between sites as well as water and sediment samples were observed. These results indicated that sites under different levels of anthropogenic disturbances have selected distinct bacterial communities. pH, dissolved oxygen (DO), concentrations of total nitrogen (TN) and heavy metals were the main factors that influence the diversity and the composition of bacterial community. Specifically, the relative abundance of Proteobacteria was negatively correlated with pH and DO and positively correlated with TN, while Actinobacteria and Verrucomicrobia showed the opposite pattern. Moreover, positive correlations between the relative abundances of Firmicutes and Bacteroidetes and the concentration of heavy metals were also found. Results of functional prediction analysis showed no significant differences of the carbon, nitrogen and phosphorus metabolism across the sites and seasons. Potential pathogens such as Vibrio, Arcobacter, Acinetobacter and Pseudomonas were found in these samples, which may pose potential risks for environment and human health. This study reveals the effect of anthropogenic activities on the riverine bacterial community compositions and provides new insights into the relationships between the environmental factors and the bacterial community distributions in a freshwater ecosystem under anthropogenic disturbances.
Показать больше [+] Меньше [-]Determinants of personal exposure to fine particulate matter in the retired adults – Results of a panel study in two megacities, China Полный текст
2020
Li, Na | Xu, Chunyu | Liu, Zhe | Li, Ning | Chartier, Ryan | Chang, Junrui | Wang, Qin | Wu, Yaxi | Li, Yunpu | Xu, Dongqun
This study aimed to investigate the relationship between outdoor, indoor, and personal PM₂.₅ exposure in the retired adults and explore the effects of potential determinants in two Chinese megacities. A longitudinal panel study was conducted in Nanjing (NJ) and Beijing (BJ), China, and thirty-three retired non-smoking adults aged 43–86 years were recruited in each city. Repeated measurements of outdoor-indoor-personal PM₂.₅ concentrations were measured for five consecutive 24-h periods during both heating and non-heating seasons using real-time and gravimetric methods. Time-activity and household characteristics were recorded. Mixed-effects models were applied to analyze the determinants of personal PM₂.₅ exposure. In total, 558 complete sets of collocated 24-h outdoor-indoor-personal PM₂.₅ concentrations were collected. The median 24-h personal PM₂.₅ exposure concentrations ranged from 43 to 79 μg/m³ across cities and seasons, which were significantly greater than their corresponding indoor levels (ranging from 36 to 68 μg/m³, p < 0.001), but significantly lower than outdoor levels (ranging from 43 to 95 μg/m³, p < 0.001). Indoor and outdoor PM₂.₅ concentrations were the strongest determinants of personal exposures in both cities and seasons, with RM² ranging from 0.814 to 0.915 for indoor and from 0.698 to 0.844 for outdoor PM₂.₅ concentrations, respectively. The personal-outdoor regression slopes varied widely among seasons, with a pronounced effect in BJ (NHS: 0.618 ± 0.042; HS: 0.834 ± 0.023). Ventilation status, indoor PM₂.₅ sources, personal characteristics, and meteorological factors, were also found to influence personal exposure levels. The city and season-specific models developed here are able to account for 89%–93% of the variance in personal PM₂.₅ exposure. A LOOCV analysis showed an R² (RMSE) of 0.80–0.90 (0.21–0.36), while a 10-fold CV analysis demonstrated a R² (RMSE) of 0.83–0.90 (0.20–0.35). By incorporating potentially significant determinants of personal exposure, this modeling approach can improve the accuracy of personal PM₂.₅ exposure assessment in epidemiologic studies.
Показать больше [+] Меньше [-]Effects of the manipulation of submerged macrophytes, large zooplankton, and nutrients on a cyanobacterial bloom: A mesocosm study in a tropical shallow reservoir Полный текст
2020
Amorim, Cihelio A. | Moura, Ariadne N.
Biomanipulation is an efficient tool to control eutrophication and cyanobacterial blooms in temperate lakes. However, the effects of this technique are still unclear for tropical ecosystems. Herein, we evaluated the effects of the biomanipulation on cyanobacterial biomass in a tropical shallow reservoir in Northeast Brazil. A mesocosm experiment was conducted in Tapacurá reservoir (Pernambuco) with eight treatments, in which we factorially manipulated the presence of submerged macrophytes (Ceratophyllum demersum), large herbivorous zooplankton (Sarsilatona serricauda), and nutrients (0.4 mg L⁻¹ of nitrogen and 0.5 mg L⁻¹ of phosphorus). On the first, fifth, and tenth days, we analyzed the total biomass of cyanobacteria, and the morphotypes coccoid, heterocyted filamentous, and non-heterocyted filamentous cyanobacteria; these components were compared through a three-way ANOVA. The bloom was composed mainly of five Microcystis morphospecies (coccoids) and Raphidiopsis raciborskii (heterocyted filaments). On the fifth day of the experiment, the combined addition of macrophytes and zooplankton was more efficient at controlling cyanobacterial biomass. On the tenth day, all macrophyte treatments showed significant cyanobacterial biomass reduction, decreasing up to 84.8%. On the other hand, nutrients and zooplankton, both isolated and combined, had no significant effect. Macrophytes also reduced the biomass of coccoids, heterocyted filaments, and non-heterocyted filaments when analyzed separately on the tenth day. Ceratophyllum demersum was more efficient at controlling the bloom than the addition of large herbivorous zooplankton, which could be related to allelopathy since cyanobacterial biomass was also reduced when nutrients were added. The addition of submerged macrophytes with allelopathic potential, associated with the increase of large herbivorous zooplankton, proved to be an efficient technique for controlling tropical cyanobacterial blooms.
Показать больше [+] Меньше [-]microRNA expression profiles and personal monitoring of exposure to particulate matter Полный текст
2020
Mancini, Francesca Romana | Laine, Jessica E. | Tarallo, Sonia | Vlaanderen, Jelle | Vermeulen, Roel | van Nunen, Erik | Hoek, Gerard | Probst-Hensch, Nicole | Imboden, Medea | Jeong, Ayoung | Gulliver, John | Chadeau-Hyam, Marc | Nieuwenhuijsen, Mark | de Kok, Theo M. | Piepers, Jolanda | Krauskopf, Julian | Kleinjans, Jos C.S. | Vineis, Paolo | Naccarati, Alessio
An increasing number of findings from epidemiological studies support associations between exposure to air pollution and the onset of several diseases, including pulmonary, cardiovascular and neurodegenerative diseases, and malignancies. However, intermediate, and potentially mediating, biological mechanisms associated with exposure to air pollutants are largely unknown. Previous studies on the human exposome have shown that the expression of certain circulating microRNAs (miRNAs), regulators of gene expression, are altered upon exposure to traffic-related air pollutants. In the present study, we investigated the relationship between particulate matter (PM) smaller than 2.5 μm (PM₂.₅), PM₂.₅ absorbance (as a proxy of black carbon and soot), and ultrafine-particles (UFP, smaller than 0.1 μm), measured in healthy volunteers by 24 h personal monitoring (PEM) sessions and global expression levels of peripheral blood miRNAs. The PEM sessions were conducted in four European countries, namely Switzerland (Basel), United Kingdom (Norwich), Italy (Turin), and The Netherlands (Utrecht). miRNAs expression levels were analysed using microarray technology on blood samples from 143 participants. Seven miRNAs, hsa-miR-24-3p, hsa-miR-4454, hsa-miR-4763-3p, hsa-miR-425-5p, hsa-let-7d-5p, hsa-miR-502-5p, and hsa-miR-505-3p were significantly (FDR corrected) expressed in association with PM₂.₅ personal exposure, while no significant association was found between miRNA expression and the other pollutants. The results obtained from this investigation suggest that personal exposure to PM₂.₅ is associated with miRNA expression levels, showing the potential for these circulating miRNAs as novel biomarkers for air pollution health risk assessment.
Показать больше [+] Меньше [-]A new perspective of probing the level of pollution in the megacity Delhi affected by crop residue burning using the triple oxygen isotope technique in atmospheric CO2 Полный текст
2020
Laskar, Amzad H. | Maurya, Abhayanand S. | Singh, Vishvendra | Gurjar, Bhola R. | Liang, Mao-Chang
Air quality in the megacity Delhi is affected not only by local emissions but also by pollutants from crop residue burning in the surrounding areas of the city, particularly the rice straw burning in the post monsoon season. As a major burning product, gaseous CO₂, which is rather inert in the polluted atmosphere, provides an alternative solution to characterize the impact of biomass burning from a new perspective that other common tracers such as particulate matters are limited because of their physical and chemical reactiveness. Here, we report conventional ([CO₂], δ¹³C, and δ¹⁸O) and unconventional (Δ¹⁷O) isotope data for CO₂ collected at Connaught Place (CP), a core area in the megacity Delhi, and two surrounding remote regions during a field campaign in October 18–20, 2017. We also measured the isotopic ratios near a rice straw burning site in Taiwan to constrain their end member isotopic compositions. Rice straw burning produces CO₂ with δ¹³C, δ¹⁸O, and Δ¹⁷O values of −29.02 ± 0.65, 19.63 ± 1.16, and 0.05 ± 0.02‰, respectively. The first two isotopic tracers are less distinguishable from those emitted by fossil fuel combustion but the last one is significantly different. We then utilize these end member isotopic ratios, with emphasis on Δ¹⁷O for the reason given above, for partitioning sources that affect the CO₂ level in Delhi. Anthropogenic fraction of CO₂ at CP ranges from 4 to 40%. Further analysis done by employing a three-component (background, rice straw burning, and fuel combustion) mixing model with constraints from the Δ¹⁷O values yields that rice straw burning contributes as much as ∼70% of the total anthropogenic CO₂, which is more than double of the fossil fuel contribution (∼30%), during the study days.
Показать больше [+] Меньше [-]In-situ biodegradation of harmful pollutants in landfill by sludge modified biochar used as biocover Полный текст
2020
Qin, Linbo | Huang, Xinming | Xue, Qiang | Liu, Lei | Wan, Yong
MSW landfill releases a lot of harmful pollutants such as H₂S, NH₃, and VOCs. In this study, two laboratory-scale biocovers such as biochar (BC) derived from agricultural & forestry wastes (AFW) pyrolysis, and sludge modified the biochar (SBC) were designed and used to remove the harmful pollutants. In order to understand in-situ biodegradation mechanism of the harmful pollutants by the SBC, the removal performances of the harmful pollutants together with the bacterial community in the BC and SBC were investigated in simulated landfill systems for 60 days comparing with the contrast experiment of a landfill cover soil (LCS). Meanwhile, the adsorption capacities of representative harmful pollutants (hydrogen sulfide, toluene, acetone and chlorobenzene) in the LCS, BC, and SBC were also tested in a fixed bed reactor. The removal efficiencies of the harmful pollutants by the SBC ranged from 95.43% to 100.00%, which was much higher than that of the LCS. The adsorption capacities of the harmful pollutants in the SBC were 4 times higher than that of the LCS since the SBC exhibited higher BET surface and N-containing functional groups. Meanwhile, the biodegradation rates of the harmful pollutants in the SBC were also much higher than that of the LCS since the populations of the bacterial community in the SBC were more abundant due to its facilitating the growth and activity of microorganisms in the porous structure of the SBC. In addition, a synergistic combination of adsorption and biodegradation in the SBC that enhanced the reproduction rate of microorganisms by consuming the absorbed-pollutants as carbon sources, which also contributed to enhance the biodegradation rates of the harmful pollutants.
Показать больше [+] Меньше [-]Design of a Z-scheme g-C3N4/CQDs/CdIn2S4 composite for efficient visible-light-driven photocatalytic degradation of ibuprofen Полный текст
2020
Liang, Mingxing | Zhang, Zhaosheng | Long, Run | Wang, Ying | Yu, Yajing | Pei, Yuansheng
A novel Z-scheme photocatalyst consisting of acidified graphitic carbon nitrogen (ag-C₃N₄)/carbon quantum dots/CdIn₂S₄ (CN/CQDs/CIS) was successfully synthesized via a one-step hydrothermal method. The optimized CN-2/CQDs-3/CIS exhibited significantly improved photocatalytic performance in the degradation of ibuprofen under visible-light irradiation. Based on a series of characterizations, the ag-C₃N₄ and CQDs were distributed uniformly on the surface of the cubic spinel structure of CIS, with intimate contact among the materials. This intimate heterogeneous interface facilitated the migration of photogenerated carriers, further leading to enhanced photocatalytic performance. These results also indicated that the CQDs not only connect ag-C₃N₄ with CIS through covalent bonds but also enhance the visible-light adsorption. According to the analysis of the UV–vis diffuse reflectance spectra (DRS) and Mott-Schottky curves, the mechanism of the Z-scheme heterojunction is proposed. The CQDs serve as electron mediators and transfer the electrons in the conduction band (CB) of ag-C₃N₄ to recombine with the holes in the valence band (VB) of CIS in the Z-scheme, leading to the enhanced separation efficiency of the photogenerated electrons in the CB of ag-C₃N₄ and the holes in the VB of CIS. The pollutant IBU was degraded by h⁺, ·O₂⁻ and ·OH, as determined by electron paramagnetic resonance (EPR) analysis.
Показать больше [+] Меньше [-]Contamination of stream fish by plastic waste in the Brazilian Amazon Полный текст
2020
Ribeiro-Brasil, Danielle Regina Gomes | Torres, Naiara Raiol | Picanço, Ana Beatriz | Sousa, David Silva | Ribeiro, Vanessa Serrão | Brasil, Leandro Schlemmer | Montag, Luciano Fogaça de Assis
Pollution by plastics is a global problem, in particular through the contamination of aquatic environments and biodiversity. Although plastic contamination is well documented in the aquatic fauna of the oceans and large rivers of the world, there are few data on the organisms of headwater streams, especially in tropical regions. In the present study, we evaluated the contamination of small fish by plastics in Amazonian streams. For this, we evaluated the shape and size, and the abundance of plastics in the gastrointestinal tracts and gills of 14 fish species from 12 streams in eastern Brazilian Amazon. We used a Generalized Linear Mixed Model (GLMM) to compare the levels of contamination among species and between organs. Only one individual of the 68 evaluated (a small catfish Mastiglanis cf. asopos) contained no plastic particles, and no difference was found in the contamination of the gills and digestive tract. However, Hemigrammus unilineatus presented less contamination of both the gills and the digestive tract than the other species, while Polycentrus schomburgkii had less plastic in the gastrointestinal tract, whereas Crenicichla regani and Pimelodella gerii both had a larger quantity of plastic adhered to their gills in comparison with the other species. Nanoplastics and microplastics adhered most to the gills, while plastic fibers were the most common type of material overall. This is the first study to analyze plastic contamination in fish from Amazonian streams, and in addition to revealing high levels of contamination, some species were shown to possibly be more susceptible than others. This reinforces the need for further, more systematic research into the biological and behavioral factors that may contribute to the greater vulnerability of some fish species to contamination by plastics.Amazonian stream fish show contamination by plastics. The species respond differently. The smaller the particle, the easier it is to adhere to the gills.
Показать больше [+] Меньше [-]Sorption of fluoroquinolones to nanoplastics as affected by surface functionalization and solution chemistry Полный текст
2020
Zhang, Huan | Liu, Feifei | Wang, Su-chun | Huang, Tian-yuan | Li, Meng-ru | Zhu, Zhi-lin | Liu, Guang-zhou
Microplastics have attracted much attention in recent years as they can interact with pollutants in water environment. However, nanoplastics (NPs) with or without the surface functionalization modification have not been thoroughly explored. Here, the sorption behaviors of two fluoroquinolones (FQs), including norfloxacin (NOR) and levofloxacin (LEV) on polystyrene NPs (nano-PS) and carboxyl-functionalized polystyrene NPs (nano-PS-COOH) were investigated. The results showed that sorption isotherms were nonlinear and well fitted by Langmuir model. The sorption capacities of NOR and LEV on nano-PS-COOH were higher than those on nano-PS, and their physical interactions, including polar interaction, electrostatic interaction and hydrogen bonding may be the dominant mechanisms. Moreover, the increase of pH firstly increased the sorption of two FQs on NPs and then decreased because NOR and LEV had a reverse charge at different pH values. Salinity and dissolved organic matter both inhibited the sorption process. These findings show that NPs with or without the surface functionalization modification have different sorption behaviors for environmental pollutants, which deserve our further concern.
Показать больше [+] Меньше [-]