Уточнить поиск
Результаты 1271-1280 из 6,548
Behavior and distribution of polystyrene foams on the shore of Tuul River in Mongolia Полный текст
2020
Battulga, Batdulam | Kawahigashi, Masayuki | Oyuntsetseg, Bolormaa
Foamed plastic debris in aquatic systems has become one of the emerging global contaminants. In this study, the behavior of polystyrene foam (PSF) and microplastics (MPs) adhered on the PSFs were investigated on the Tuul River shore in Ulaanbaatar, the capital city of Mongolia. The micro-sized (<5 mm) PSF, which was the dominant PSF over 600 pieces in 100 m², have accumulated along the shoreline of Tuul River. Carbonyl index (CI) was calculated to evaluate the surface oxidation of macro-sized (20–100 mm), meso-sized (5–20 mm), and micro-sized PSFs and confirm the relative aging depending on photodegradation. CI ranged from 0.00 to 1.09 in the sampled PSFs, whereby the degraded PSFs with high CI were distributed on the shore of downstream of sewer drainage. Micro-sized PSFs showed a wide range of CI and a relatively high average value of CI as compared to those of meso- and macro-sized PSFs. Most of PSFs aggregated with MPs and the adhered MPs have been ubiquitously detected from the surface of PSFs. Adhered micro-sized plastics explored from the surface of PSFs with various sizes, except for mega-sized (>100 mm) PSF, ranged from 5 to 141 items per piece of PSF fragment. The aggregates of PSFs and MPs were common status of PSFs during their transportation. The present findings, which indicated a high concentration of adhered MPs, raise an environmental concern about the widespread aquatic plastic pollution.
Показать больше [+] Меньше [-]Growth and physiological responses of tree seedlings to oil sands non-segregated tailings Полный текст
2020
Zhang, Wen-Qing | Fleurial, Killian | Sherr, Ira | Vassov, Robert | Zwiazek, Janusz J.
Bitumen recovery from oil sands in northeastern Alberta, Canada produces large volumes of tailings, which are deposited in mining areas that must be reclaimed upon mine closure. A new technology of non-segregated tailings (NST) developed by Canadian Natural Resources Limited (CNRL) was designed to accelerate the process of oil sands fine tailings consolidation. However, effects of these novel tailings on plants used for the reclamation of oil sands mining areas remain to be determined. In the present study, we investigated the effects of NST on seedlings of three species of plants commonly planted in oil sands reclamation sites including paper birch (Betula papyrifera), white spruce (Picea glauca) and green alder (Alnus viridis). In the controlled-environment study, we grew seedlings directly in NST and in the two types of reclamation soils with and without added NST and we measured seedling growth, gas exchange parameters, as well as tissue concentrations of selected elements and foliar chlorophyll. White spruce seedlings suffered from severe mortality when grown directly in NST and their needles contained high concentrations of Na. The growth and physiological processes were also inhibited by NST in green alder and paper birch. However, the addition of top soil and peat mineral soil mix to NST significantly improved the growth of plants, possibly due to a more balanced nutrient uptake. It appears that NST may offer some advantages in terms of site revegetation compared with the traditional oil sands tailings that were used in the past. The results also suggest that, white spruce may be less suitable for planting at reclamation sites containing NST compared with the two studied deciduous tree species.
Показать больше [+] Меньше [-]The endophytic bacterium relieved healthy risk of pakchoi intercropped with hyperaccumulator in the cadmium polluted greenhouse vegetable field Полный текст
2020
Ma, Luyao | Wu, Yingjie | Wang, Qiong | Feng, Ying
Planting leafy vegetables, especially pakchoi, in cadmium (Cd) polluted farmland is easy to lead to excessive Cd content in edible parts, which results in high risk of food chain. In this study, a field experiment was carried out to study the effects of intercropping of pakchoi with Cd hyperaccumulator Sedum alfredii Hance, and the roles of endophytic bacterium SaMR12 was also investigated. When intercropping with Sedum, the growth of pakchoi was not affected but their Cd concentration and accumulation were significantly increased, while which were obviously decreased by SaMR12 inoculation. After intercropping, the biomass of Sedum was significantly reduced, but their Cd concentration increased. SaMR12 inoculation significantly increased Cd accumulation of Sedum, and which increased to 3 times in Sedum monoculture. Those results showed that although intercropping with hyperaccumulator could lead to higher risk of pakchoi in Cd polluted field, intercropping with SaMR12 inoculated Sedum can decrease Cd concentration of pakchoi and promote Cd absorption of Sedum, which indicated that this endophyte can be made into a microbial inoculum as a soil additive for the safe production of vegetables and the soil Cd pollution remediation.
Показать больше [+] Меньше [-]Exposure to wood smoke particles leads to inflammation, disrupted proliferation and damage to cellular structures in a human first trimester trophoblast cell line Полный текст
2020
Erlandsson, Lena | Lindgren, Robert | Nääv, Åsa | Krais, Annette M. | Strandberg, Bo | Lundh, Thomas | Boman, Christoffer | Isaxon, Christina | Hansson, Stefan R. | Malmqvist, Ebba
The ongoing transition to renewable fuel sources has led to increased use of wood and other biomass fuels. The physiochemical characteristics of biomass combustion derived aerosols depends on appliances, fuel and operation procedures, and particles generated during incomplete combustion are linked to toxicity. Frequent indoor wood burning is related to severe health problems such as negative effects on airways and inflammation, as well as chronic hypoxia and pathological changes in placentas, adverse pregnancy outcome, preterm delivery and increased risk of preeclampsia. The presence of combustion-derived black carbon particles at both the maternal and fetal side of placentas suggests that particles can reach the fetus. Air pollution particles have also been shown to inhibit trophoblast migration and invasion, which are vital functions for the development of the placenta during the first trimester. In this study we exposed a placental first trimester trophoblast cell line to wood smoke particles emitted under Nominal Burn rate (NB) or High Burn rate (HB). The particles were visible inside exposed cells and localized to the mitochondria, causing ultrastructural changes in mitochondria and endoplasmic reticulum. Exposed cells showed decreased secretion of the pregnancy marker human chorionic gonadotropin, increased secretion of IL-6, disrupted membrane integrity, disrupted proliferation and contained specific polycyclic aromatic hydrocarbons (PAHs) from the particles. Taken together, these results suggest that wood smoke particles can enter trophoblasts and have detrimental effects early in pregnancy by disrupting critical trophoblast functions needed for normal placenta development and function. This could contribute to the underlying mechanisms leading to pregnancy complications such as miscarriage, premature birth, preeclampsia and/or fetal growth restriction. This study support the general recommendation that more efficient combustion technologies and burning practices should be adopted to reduce some of the toxicity generated during wood burning.
Показать больше [+] Меньше [-]Consistent trace element distribution and mercury isotopic signature between a shallow buried volcanic-hosted epithermal gold deposit and its weathered horizon Полный текст
2020
Yin, Runsheng | Pan, Xin | Deng, Changzhou | Sun, Guangyi | Kwon, Sae Yun | Lepak, Ryan F. | Hurley, James P.
Trace elements and Hg isotopic composition were investigated in mineralized rocks, barren rocks, and mineral soils in the Xianfeng prospect, a shallow buried epithermal gold deposit in northeastern China, to understand whether this deposit has left a diagnostic geochemical fingerprint to its weathered horizon. All the rocks and soils display congruent patterns for immobile elements (large ion lithophile elements, high field strength elements, and rare earth elements), which reflect the subduction-related tectonic setting. Both mineralized rocks and soils showed common enrichment of elemental suite As–Ag–Sb–Hg, suggesting that the Xianfeng gold deposit has released these elements into its weathered horizon. Similar mercury isotopic composition was observed between mineralized rocks (δ²⁰²Hg: −0.21 ± 0.70‰; Δ¹⁹⁹Hg: −0.02 ± 0.12‰; 2SD) and barren rocks (δ²⁰²Hg: −0.46 ± 0.48‰; Δ¹⁹⁹Hg: 0.00 ± 0.10‰; 2SD), suggesting that mercury in the Xianfeng deposit is mainly derived from the magmatic rocks. Mineralized soils (δ²⁰²Hg: −0.44 ± 0.60‰; −0.03 ± 0.14‰; 2SD) and barren soils (δ²⁰²Hg: −0.54 ± 0.68‰; Δ¹⁹⁹Hg: −0.05 ± 0.14‰; 2SD) displayed congruent Hg isotopic signals to the underlying rocks, suggesting limited Hg isotope fractionation during the release of Hg from ore deposit to soils via weathering. This study reveals evidence of a simple and direct geochemical link between this shallow buried hydrothermal deposit and its weathered horizon, and highlights that the weathering of shallow-buried hydrothermal gold deposits can release a substantial amount of heavy metals (e.g. Hg, As and Sb) to surface soil.
Показать больше [+] Меньше [-]Effects of BPA on zebrafish gonads: Focus on the endocannabinoid system Полный текст
2020
Forner-Piquer, Isabel | Beato, Silvia | Piscitelli, Fabiana | Santangeli, Stefania | Di Marzo, Vincenzo | Habibi, Hamid R. | Maradonna, Francesca | Carnevali, Oliana
Bisphenol A (BPA), a monomer used for polycarbonate manufacture, has been widely reported as an endocrine-disrupting chemical (EDC). Among other alterations, BPA induces reproductive dysfunctionalities. Changes in the endocannabinoid system (ECS) have been recently shown to be associated with reproductive disorders. The ECS is a lipid-based signaling system (cannabinoid receptors, endocannabinoids and enzymatic machinery) involved in several physiological functions. The main goal of the present study was to assess the effects of two environmental concentrations of BPA (10 and 20 μg/L) on the ECS in 1-year old zebrafish gonads. In males, BPA increased the gonadosomatic index (GSI) and altered testicular levels of endocannabinoids as well as reduced the testicular area occupied by spermatogonia. In male liver, exposure to 20 μg/L BPA significantly increased vitellogenin (vtg) transcript levels. In female zebrafish, BPA altered ovarian endocannabinoid levels, elevated hepatic vtg mRNA levels as well as increased the percentage of vitellogenic oocytes in the ovaries. In conclusion, exposure to two environmentally relevant concentrations of BPA altered the ECS and consequently, gonadal function in both male and female zebrafish.
Показать больше [+] Меньше [-]Supplementing resuscitation-promoting factor (Rpf) enhanced biodegradation of polychlorinated biphenyls (PCBs) by Rhodococcus biphenylivorans strain TG9T Полный текст
2020
Ye, Zhe | Li, Hongxuan | Jia, Yangyang | Fan, Jiahui | Wan, Jixing | Guo, Li | Su, Xiaomei | Zhang, Yu | Wu, Weimin | Shen, Chaofeng
The biodegradation of polychlorinated biphenyls (PCBs) occurs slowly when the degrading bacteria enter a low activity state, such as a viable but nonculturable (VBNC) state, under unfavorable environmental conditions. The introduction of resuscitation-promoting factor (Rpf) can re-activate VBNC bacteria. This study tested the feasibility of enhancing PCB biodegradation via supplementing Rpf in liquid culture and soil microcosms inoculated with Rhodococcus biphenylivorans strain TG9ᵀ. Exogenous Rpf resuscitated TG9ᵀ cells that had previously entered the VBNC state after 90 d of nutrient starvation, resulting in the significantly enhanced degradation of PCB by 24.3% over 60 h in liquid medium that originally contained 50 mg L⁻¹ Aroclor 1242. In soil microcosms containing 50 mg kg⁻¹ Aroclor 1242 and inoculated with VBNC TG9ᵀ cells, after 49 d of supplementation with Rpf, degradation efficiency of PCB reached 34.2%, which was significantly higher than the control. Our results confirmed that exogenous Rpf resuscitated VBNC TG9ᵀ cells by stimulating endogenous expression of rpf gene orthologs. The enhanced PCB-degrading capability was likely due to the increased cell numbers and the strong expression of PCB catabolic genes. This study demonstrated the role of Rpf in enhancing PCB degradation via resuscitating PCB-degrading bacteria, indicating a promising approach for the remediation of PCB contamination.
Показать больше [+] Меньше [-]1,4NQ-BC enhances the lung inflammation by mediating the secretion of IL-33 which derived from macrophages Полный текст
2020
Xiao, Qianqian | Song, Yiming | Chu, Hongqian | Tang, Mengmeng | Jiang, Jianjun | Meng, Qinghe | Hao, Weidong | Wei, Xuetao
Black carbon (BC) is a product of incomplete combustion of fossil fuels and vegetation. The compelling evidence has demonstrated that it has a close relationship with several respiratory and cardiovascular diseases. BC provides the reactive sites and surfaces to absorb various chemicals, such as polycyclic aromatic hydrocarbons (PAH). Naphthoquinone is a typical PAHs which was found in particulate matter (PM) and 1,4NQ-BC owned high oxidative potential and cytotoxicity. IL-33 is an alarmin which increases innate immunity through Th2 responses. It was reported that IL-33 was a potent inducer of pro-inflammatory cytokines, like IL-6. In our previous study, it was revealed that 1,4NQ-BC instilled intratracheally to mice could trigger the lung inflammation and stimulate the secretion of IL-33 in lung tissue. We found that IL-33 could induce inflammation in lung itself. When the macrophages were eliminated, the secretion of IL-33 was reduced and the pathological damage in the lung was relieved after exposure to 1,4NQ-BC. Both MAPK and PI3K/AKT signal pathways were involved in the process of IL-33 secretion and the lung inflammation induced by 1,4NQ-BC. The findings herein support the notion that after exposure to 1,4NQ-BC, the increased secretion of IL-33 was mainly derived from macrophages through both MAPK and PI3K/AKT signal pathways.
Показать больше [+] Меньше [-]B-vitamin supplementation ameliorates anxiety- and depression-like behavior induced by gestational urban PM2.5 exposure through suppressing neuroinflammation in mice offspring Полный текст
2020
Wang, Xia | Wang, Tingting | Sun, Lijuan | Zhang, Haoyun | Liu, Chong | Zhang, Can | Yu, Li
PM₂.₅ exposure is an emerging environmental concern and severe health insult closely related to psychological conditions such as anxiety and depression in adolescence. Adolescence is a critical period for neural system development characterized by continuous brain maturation, especially in the prefrontal cortex. The etiology of these adolescent conditions may derive from fetal origin, probably attributed to the adverse effects induced by intrauterine environmental exposure. Anxiety- and depression-like behavior can be induced by gestational exposure to PM₂.₅ in mice offspring which act as a useful model system. Recent studies show that B-vitamin may alleviate PM₂.₅-induced hippocampal neuroinflammation- and function-related spatial memory impairment in adolescent mice offspring. However, cortical damage and related neurobehavioral defects induced by gestational PM₂.₅ exposure, as well as the potential reversibility by interventions in mice offspring require to be elucidated. Here, we aimed to investigate whether B-vitamin would protect mice offspring from the adverse effects derived from gestational exposure to urban PM₂.₅ on cortical areas to which anxiety and depression are closely related. Pregnant mice were divided into three groups: control group (treated with PBS alone), model group (treated with both PM₂.₅ and PBS), and intervention group (treated with both PM₂.₅ and B-vitamin), respectively. The mice offspring were then applied to comprehensive neurobehavioral, ultrastructural, biochemical, and molecular biological analyses. Interestingly, we observed that gestational PM₂.₅ exposure led to neurobehavioral defects including anxiety- and depression-like behavior. In addition, neuroinflammation, oxidative damage, increased apoptosis, and caspase-1-mediated inflammasome activation in the prefrontal cortex were observed. Notably, both behavioral and molecular changes could be significantly alleviated by B-vitamin treatment. In summary, our results suggest that the anxiety- and depression-like behavior induced by gestational PM₂.₅ exposure in mice offspring can be ameliorated by B-vitamin supplementation, probably through the suppression of apoptosis, oxidative damage, neuroinflammation, and caspase-1-mediated inflammasome activation.
Показать больше [+] Меньше [-]Determining rainwater chemistry to reveal alkaline rain trend in Southwest China: Evidence from a frequent-rainy karst area with extensive agricultural production Полный текст
2020
Zeng, Jie | Yue, Fu-Jun | Li, Si-Liang | Wang, Zhong-Jun | Wu, Qixin | Qin, Cai-Qing | Yan, Ze-Long
Rainwater chemistry plays an important role in the earth-surficial ecosystem, but studies on rainwater chemical composition of karst agro-ecosystem are rare. To explore the rainwater alkalization and the provenance of components responsible for neutralization, two-years chemical monitoring of rainwater was carried out in a karst agricultural catchment in Southwest China. The main findings suggest that SO₄²⁻, NO₃⁻, Ca²⁺, and NH₄⁺ are the principal ions. All the ionic contents show distinctly seasonal variation (highest in winter) in response to variations in seasonal precipitation because the rain-scour process can efficiently remove atmospheric materials. Source identification indicates that Cl⁻ and Na⁺ are mainly derived from marine input whereas SO₄²⁻ and NO₃⁻ are controlled by anthropogenic emission, in particular, fixed emission sources. The source of NH₄⁺ is attributed to intense agricultural production, while Ca²⁺ and Mg²⁺ are mainly derived from calcite dissolution. The rainwater alkalization caused by the seasonal acid neutralization (via basic components, Ca²⁺ and NH₄⁺) is beneficial to crop growth but also reflect agricultural overfertilization. Sulfur controlled the total wet acid deposition (68%–94%) and could be a potential agent of weathering.
Показать больше [+] Меньше [-]