Уточнить поиск
Результаты 1271-1280 из 7,288
Recent advances in biological removal of nitroaromatics from wastewater Полный текст
2022
Zhu, Cuicui | Huang, Haining | Chen, Yinguang
Various nitroaromatic compounds (NACs) released into the environment cause potential threats to humans and animals. Biological treatment is valued for cost-effectiveness, environmental friendliness, and availability when treating wastewater containing NACs. Considering the significance and wide use of NACs, this review focuses on recent advances in biological treatment systems for NACs removal from wastewater. Meanwhile, factors affecting biodegradation and methods to enhance removal efficiency of NACs are discussed. The selection of biological treatment system needs to consider NACs loading and cost, and its performance is affected by configuration and operation strategy. Generally, sequential anaerobic-aerobic biological treatment systems perform better in mineralizing NACs and removing co-pollutants. Future research on mechanism exploration of NACs biotransformation and performance optimization will facilitate the large-scale application of biological treatment systems.
Показать больше [+] Меньше [-]Foliar dust particle retention and metal accumulation of five garden tree species in Hangzhou: Seasonal changes Полный текст
2022
Dang, Ning | Zhang, Handan | Abdus Salam, Mir Md | Li, Haimei | Chen, Guangcai
Foliar dust particle retention and metal accumulation of five garden tree species in Hangzhou: Seasonal changes Полный текст
2022
Dang, Ning | Zhang, Handan | Abdus Salam, Mir Md | Li, Haimei | Chen, Guangcai
As particulate matter and heavy metals in the atmosphere affect the atmospheric quality, they pose a threat to human health through the respiratory system. Vegetation can remove airborne particles and purify the atmosphere. Plant leaves are capable of effectively absorbing heavy metals contained by particulates. To evaluate the effects of different garden plants on the particulate matter retention and heavy metal accumulation, the seasonal changes of dust retention of five typical garden plants were compared in the industrial and non-industrial zones in Hangzhou. Results revealed that these species differed in dust retention with the descending order of Loropetalum chinense > Osmanthus fragrans > Pittosporum tobira > Photinia × fraseri > Cinnamomum camphora, which were related to the microstructure feature of the leaf. These species also showed seasonal variation in dust retention, with the highest in summer, followed by winter, autumn, and spring, respectively. The total suspended particle per unit leaf area was higher in the industrial site (80.54 g m⁻²) than in the non-industrial site (19.77 g m⁻²). Leaf particles in different size fractions differed among species, while coarse particles (d > ten μm) predominated in most cases. The L. chinense and C. camphora plants accumulated the greatest Pb and Ni compared to other plants. Overall, L. chinense was the best suitable plant species to improve the air quality.
Показать больше [+] Меньше [-]Foliar dust particle retention and metal accumulation of five garden tree species in Hangzhou: Seasonal changes Полный текст
2022
Dang, Ning | Zhang, Handan | Abdus Salam, Mir Md | Li, Haimei | Chen, Guangcai | 4100210510 | Luonnonvarakeskus
Roles of hemocyte subpopulations in silver nanoparticle transformation and toxicity in the oysters Crassostrea hongkongensis Полный текст
2022
Luo, Yali | Wang, Wen-Xiong
Hemocytes are the main immune cells in bivalve mollusks and one of the sensitive targets for nanoparticle toxicity. Bivalve hemocytes consist of multiple functional heterogeneous cell types, but their different roles in immune system against foreign particles remain largely unknown. In order to clarify the different immune responses of hemocyte subpopulations to silver nanoparticles (AgNPs) and Ag ions, in this study, the Hong Kong oyster (Crassostrea hongkongensis) hemocytes were employed and separated into three subpopulations based on their cell size and granularity, including agranulocytes (R1), semigranulocytes (R2), and granulocytes (R3). We first demonstrated that AgNPs could rapidly enter into the oyster hemocytes within 3 h by phagocytosis process and resulted in different immune responses in hemocyte subpopulations. The most affected cell subtype by AgNPs was the granulocytes, followed by semigranulocytes, whereas agranulocytes were not affected following exposure to AgNPs. Interestingly, AgNPs induced the granule formation in semigranulocytes and further increased the proportion of granulocytes, whereas their ionic counterparts had no such effects on hemocyte composition, indicating the different detoxification mechanisms for nanoparticulate and ionic form. Following AgNP exposure, the dissolved Ag ions were accumulated in lysosomes and caused lysosomal dysfunction, indicating that lysosomes were the main targets for AgNP toxicity and the dissolved Ag ions were the main contributor of AgNP toxicity. Furthermore, AgNP exposure induced reactive oxygen production and impeded the lysosome function and phagocytosis in granulocytes, with impaired immunity system in oysters. Our study identified the different immune responses of oyster hemocyte subpopulations to AgNPs based on the in vitro short-term exposure assays, which may be applied to rapidly evaluate the ecotoxicological risks of different nanoparticles in aquatic systems.
Показать больше [+] Меньше [-]Association between urinary phthalate metabolites and dyslipidemia in children: Results from a Chinese cohort study Полный текст
2022
Gao, Di | Zou, Zhiyong | Li, Yanhui | Chen, Manman | Ma, Ying | Chen, Li | Wang, Xijie | Yang, Zhaogeng | Dong, Yanhui | Ma, Jun
Rising evidence of both experimental and epidemiological studies suggests that phthalate exposure may contribute to increased risks of metabolic disorders. But there is limited research on the childhood dyslipidemia. Our cohort study was conducted in Xiamen city, Fujian Province, China. A total of 829 children (mean age 8.5 years) were included with collection of urine, blood samples and demographic data in May 2018 and followed up once a year from 2018 to 2020. We performed adjusted log-binomial regressions to examine associations between sex-specific tertiles of seven phthalate metabolites and dyslipidemia in visit 1, as well as persistent dyslipidemia and occasional dyslipidemia. We also used generalized estimating equation models (GEE) to explore the relationships between log-transformed phthalate metabolites and lipid profiles. In adjusted models, the prevalence and RRs of dyslipidemia increased with tertile group of mono-n-butyl phthalate (MnBP), mono-2-ethyl-5-oxohexyl phthalate (MEOHP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), and summed di-(2-ethylhexyl) phthalate (∑DEHP) metabolites with a dose-response relationship in visit 1, as well as persistent dyslipidemia. Higher MnBP, ∑LMWP, MEHHP, MEOHP, and ∑DEHP concentrations were also associated with higher levels of log-transformed triglycerides (TG). Boys were more vulnerable to phthalates exposure than girls. In conclusion, children in China were widely exposed to phthalates, and phthalates exposure during childhood might significantly increase the risk of dyslipidemia and a higher level of lipid profiles, particularly in boys.
Показать больше [+] Меньше [-]Effects of nitrogen and phosphorus enrichment on soil N2O emission from natural ecosystems: A global meta-analysis Полный текст
2022
Shen, Yawen | Zhu, Biao
Nitrogen (N) and phosphorous (P) enrichment play an important role in regulating soil N₂O emission, but their interactive effect remains elusive (i.e. whether the effect of P or N enrichment on soil N₂O emission varies between ambient and elevated soil N or P conditions). Here, we conducted a Bayesian meta-analysis across the global natural ecosystems to determine this effect. Our results showed that P enrichment significantly decreased soil N₂O emission by 13.9% at ambient soil N condition. This N₂O mitigation is likely due to the decreased soil NO₃⁻-N content (−17.6%) derived by the enhanced plant uptake when the P limitation was alleviated by P enrichment. However, this P-induced N₂O (and NO₃⁻-N) mitigation was not found at elevated soil N condition. Additionally, N enrichment significantly increased soil N₂O emission by 101.4%, which was associated with the increased soil NH₄⁺-N (+41.0%) and NO₃⁻-N (+82.3%). However, the effect of N enrichment on soil N₂O emission did not differ between ambient and elevated soil P subgroups, indicating that the P-derived N₂O mitigation could be masked by N enrichment. Further analysis showed that manipulated N rate, soil texture, soil dissolved organic nitrogen, soil total nitrogen, soil organic carbon, soil pH, aboveground plant biomass, belowground plant biomass, and plant biomass nitrogen were the main factors affecting soil N₂O emission under N enrichment. Taken together, our study provides evidence that P enrichment has the potential to reduce soil N₂O emission from natural ecosystems, but this mitigation effect could be masked by N enrichment.
Показать больше [+] Меньше [-]Measurement-based intermediate volatility organic compound emission inventory from on-road vehicle exhaust in China Полный текст
2022
Wang, Anqi | Yuan, Zibing | Liu, Xuehui | Wang, Menglei | Yang, Jun | Sha, Qing'e | Zheng, Junyu
Intermediate volatility organic compounds (IVOCs) have great potential to form secondary organic aerosols (SOA) in the atmosphere. Thus, a high-resolution IVOC emission inventory is essential for the accurate simulation of SOA formation. This study developed the first nationwide on-road vehicular IVOC emission inventory in China based on localized measurement of the IVOC emission factors and volatility distributions for various vehicle types. The total vehicular IVOC emissions in China in 2019 were estimated to be 241.2 Gg. Heavy-duty trucks, light-duty trucks, and light-duty passenger vehicles contributed the most, accounting for 47.6%, 24.6%, and 16.9% of total vehicular IVOC emissions, respectively. Although much higher in number, gasoline vehicles contributed 15.0%, which was far less than the contribution of diesel vehicles. The two peaks in volatility bins B₁₂–B₁₃ and B₁₆–B₁₇ accounted for 42.2% and 23.7% of the total IVOC emissions, respectively. By gridding the emission inventory into a relatively high resolution of 0.1° × 0.1°, high-emission areas and hotspots were clearly identified. In general, eastern China had substantially higher vehicular IVOC emissions than western China. High-emission areas with emission intensity >10 Mg·grid⁻¹ covered most of the North China Plain, Yangtze River Delta, and Pearl River Delta. The emission intensity over the downtown areas of Beijing and Shanghai exceeded 50 Mg·grid⁻¹. In contrast, IVOC emissions over western China were relatively lower, with a network structure gathering around the traffic arteries serving inter-provincial transportation. This study underscored the importance of having a localized emission factor to better reflect the IVOC emission characteristics from Chinese vehicles and to improve the assessment of their environmental impacts.
Показать больше [+] Меньше [-]Antibiotics in mariculture systems: A review of occurrence, environmental behavior, and ecological effects Полный текст
2022
Wang, Xiaotong | Lin, Yufei | Zheng, Yang | Meng, Fanping
Antibiotics are widely applied to prevent and treat diseases occurred in mariculture. The often-open nature of mariculture production systems has led to antibiotic residue accumulation in the culturing and adjacent environments, which can adversely affect aquatic ecosystems, and even human. This review summarizes the occurrence, environmental behavior, and ecological effects of antibiotics in mariculture systems based on peer-reviewed papers. Forty-five different antibiotics (categorized into ten groups) have been detected in mariculture systems around the world, which is far greater than the number officially allowed. Indiscriminate use of antibiotics is relatively high among major producing countries in Asia, which highlights the need for stricter enforcement of regulations and policies and effective antibiotic removal methods. Compared with other environmental systems, some environmental characteristics of mariculture systems, such as high salinity and dissolved organic matter (DOM) content, can affect the migration and transformation processes of antibiotics. Residues of antibiotics favor the proliferation of antibiotic resistance genes (ARGs). Antibiotics and ARGs alter microbial communities and biogeochemical cycles, as well as posing threats to marine organisms and human health. This review may provide a valuable summary of the effects of antibiotics on mariculture systems.
Показать больше [+] Меньше [-]Lead zinc slag-based geopolymer: Demonstration of heavy metal solidification mechanism from the new perspectives of electronegativity and ion potential Полный текст
2022
Zhang, Qiushi | Cao, Xing | Sun, Shichang | Yang, Weichen | Fang, Lin | Ma, Rui | Lin, Chenghua | Li, Haowen
Lead-zinc slag (LZS) is a solid waste product that is rich in silicon and aluminum and has enormous resource potential for functional environmental functional geopolymer materials. Unfortunately, the solidification mechanism of heavy metals in geopolymers is still unclear, which is detrimental to the heavy metal solidification of LZS. In this study, we comprehensively studied and demonstrated the solidification mechanisms of Pb and Zn in geopolymers, based on the preparation of high-performance LZS-based geopolymers (compressive strength up to 89.3 MPa, and Pb and Zn solidification efficiency up to 93.1% and 90.0%, respectively). Thereafter, the solidification mechanism differences between Pb and Zn were explained by electronegativity and ion potential. Due to the ionic potential order of Zn²⁺> Pb²⁺> Na⁺, both Zn²⁺ and Pb²⁺ could exchange with Na⁺ in the geopolymer. In addition, due to the electronegativity order of Pb > Si > Zn, Pb could attack the [SiO₄] structure and form covalent bonds in the Pb–O structure, while Zn did not (shown by Raman spectroscopy). As a result, Pb simultaneously solidified in the geopolymer through covalent bonding and ion exchange, while Zn was solidified mainly by ion exchange. Thus, this work provides new perspectives and ideas for the solidification mechanisms of heavy metals in geopolymers.
Показать больше [+] Меньше [-]Fate of river-derived microplastics from the South China Sea: Sources to surrounding seas, shores, and abysses Полный текст
2022
Matsushita, Kosei | Uchiyama, Yusuke | Takaura, Naru | Kosako, Taichi
Microplastics (MPs) in the ocean have been widely recognized as causing global marine environmental problems. To gain a quantitative and comprehensive understanding of oceanic MP contamination, detailed numerical Lagrangian particle tracking experiments were conducted to evaluate the regional oceanic transport and dispersal of MPs in the South China Sea (SCS) derived from three major rivers, Pearl (China), Mekong (Vietnam), and Pasig (the Philippines), which are known to discharge large amounts of plastic waste into the SCS. As previous field surveys have suggested, MP contamination spreads from the surface to the deeper ocean in the water column, we thus considered three types of MPs: (1) positively buoyant (light) MPs, (2) positively buoyant (light) MPs with random walk diffusion, and (3) full 3-D tracking of non-buoyant MPs that are passively transported by ambient currents. Transport patterns of these MPs from the three rivers clearly showed the intra-annual variability associated with seasonally varying circulations driven by the Asian monsoons in the SCS. Many MPs floating during the prevailing southwest monsoon are transported to the northwest Pacific Ocean and the East China Sea through the Luzon Strait and the Taiwan Strait to form MP hotspots. Non-buoyant MPs are broadly transported from the surface layer to depths of approximately 100 m or deeper, where in situ observations are rare. In addition, the buoyant MPs drifting on the continental shelf originating from southern China tend to be pushed toward the shore and beached by northward wind-induced currents more pronouncedly than the non-buoyant MPs. Therefore, the river-derived MPs to the SCS were found to serve as sources to adjacent basins and oceans, to be distributed not only in the upper layer but also in the abyssal ocean (non-buoyant MPs), and to be transported to the shores (buoyant MPs).
Показать больше [+] Меньше [-]Dual effects of nZVI on maize growth and water use are positively mediated by arbuscular mycorrhizal fungi via rhizosphere interactions Полный текст
2022
Yang, Yu-Miao | Naseer, Minha | Zhu, Ying | Zhu, Shuang-Guo | Wang, Song | Wang, Bao-Zhong | Wang, Jing | Zhu, Hao | Wang, Wei | Tao, Hong-Yan | Xiong, You-Cai
Nanoscale zero-valent iron (nZVI) might generate positive and negative effects on plant growth, since it acts as either hazardous or growth-promotion role. It is still unclear whether such dual roles can be mediated by arbuscular mycorrhizal fungi (AMF) in plant-AMF symbiosis. We first identified that in 1.5 g kg⁻¹ nZVI (≤1.5 g kg⁻¹ positively), maize biomass was increased by 15.83%; yet in 2.0 g kg⁻¹ nZVI, it turned to be declined by 6.83%, relative to non-nZVI condition (CK, p < 0.05), showing a negative effect. Interestingly, the inoculation of AMF massively improved biomass by 45.18% in 1.5 g kg⁻¹ nZVI, and relieved the growth inhibition by 2.0 g kg⁻¹ nZVI. The event of water use efficiency followed similar trend as that of biomass. We found that proper concentration of nZVI can positively interact with rhizosphere AMF carrier, enabling more plant photosynthetic carbon to be remobilized to mycorrhiza. The scanning of transmission electron microscopy showed that excessive nZVI can infiltrate into root cortical cells and disrupt cellular homeostasis mechanism, significantly increasing iron content in roots by 76.01% (p < 0.05). Simultaneously, the images of scanning electron microscopy showed that nZVI were attached on root surface to form an insoluble iron ion (Fe³⁺) layer, hindering water absorption. However, they were efficiently immobilized and in situ intercepted by extraradical hyphae in mycorrhizal-nZVI symbiosis, lowering iron translocation efficiency by 6.07% (p < 0.05). Herein, the optimized structure remarkably diminished aperture blockage at root surface and improved root activities by 30.06% (p < 0.05). Particularly, next-generation sequencing demonstrated that appropriate amount of nZVI promoted the colonization and development of Funneliformis mosseae as dominant species in rhizosphere, confirming the positive interaction between AMF and nZVI, and its regulatory mechanism. Therefore, dual effects of nZVI can be actively mediated by AMF via rhizosphere interactions. The findings provided new insights into the safe and efficient application of nanomaterials in agriculture.
Показать больше [+] Меньше [-]