Уточнить поиск
Результаты 131-140 из 501
Assessing ecological responses to exposure to the antibiotic sulfamethoxazole in freshwater mesocosms
2024
Schuijt, Lara M. | van Drimmelen, Chantal K.E. | Buijse, Laura L. | van Smeden, Jasper | Wu, Dailing | Boerwinkel, Marie Claire | Belgers, Dick J.M. | Matser, Arrienne M. | Roessink, Ivo | Beentjes, Kevin K. | Trimbos, Krijn B. | Smidt, Hauke | Van den Brink, Paul J.
Antibiotics are a contaminant class of worldwide concern as they are frequently detected in aquatic ecosystems. To better understand the impacts of antibiotics on aquatic ecosystems, we conducted an outdoor mesocosm experiment in which aquatic communities were exposed to different concentrations of the antibiotic sulfamethoxazole (0, 0.15, 1.5, 15 and 150 μg/L). These concentrations include mean (0.15 μg/L) and maximum detected concentrations (15 and 150 μg/L) in aquatic ecosystems worldwide. Sulfamethoxazole was applied once a week for eight consecutive weeks to 1530 L outdoor mesocosms in the Netherlands, followed by an eight-week recovery period. We evaluated phytoplankton-, bacterial- and invertebrate responses during and after sulfamethoxazole exposure and assessed impacts on organic matter decomposition. Contrary to our expectations, consistent treatment-related effects on algal and bacterial communities could not be demonstrated. In addition, sulfamethoxazole did not significantly affect zooplankton and macroinvertebrate communities. However, some effects on specific taxa were observed, with an increase in Mesostoma flatworm abundance (NOEC of <0.15 μg/L). In addition, eDNA analyses indicated negative impacts on the insects Odonata at a sulfamethoxazole concentration of 15 μg/L. Overall, environmentally relevant sulfamethoxazole concentration did not result in direct or indirect impairment of entire aquatic communities and ecological processes in our mesocosms. However, several specific macroinvertebrate taxa demonstrated significant (in)direct effects from sulfamethoxazole. Comparison of the results with the literature showed inconsistent results between studies using comparable, environmentally relevant, concentrations. Therefore, our study highlights the importance of testing the ecological impacts of pharmaceuticals (such as sulfamethoxazole) across multiple trophic levels spanning multiple aquatic communities, to fully understand its potential ecological threats.
Показать больше [+] Меньше [-]Evaluation of microplastic pollution using bee colonies : An exploration of various sampling methodologies
2024
Cortés-Corrales, Laura | Flores, Jose Javier | Rosa, Adrian | van der Steen, Jozef J.M. | Vejsnæs, Flemming | Roessink, Ivo | Martínez-Bueno, Maria Jesús | Fernández-Alba, Amadeo R.
Recent research has highlighted the potential of honeybees and bee products as biological samplers for monitoring xenobiotic pollutants. However, the effectiveness of these biological samplers in tracking microplastics (MPs) has not yet been explored. This study evaluates several methods of sampling MPs, using honeybees, pollen, and a novel in-hive passive sampler named the APITrap. The collected samples were characterized using a stereomicroscopy to count and categorise MPs by morphology, colour, and type. To chemical identification, a micro-Fourier transform-infrared (FTIR) spectroscopy was employed to determine the polymer types. The study was conducted across four consecutive surveillance programmes, in five different apiaries in Denmark. Our findings indicated that APITrap demonstrated better reproducibility, with a lower variation in results of 39%, compared to 111% for honeybee samples and 97% for pollen samples. Furthermore, the use of APITrap has no negative impact on bees and can be easily applied in successive samplings. The average number of MPs detected in the four monitoring studies ranged from 39 to 67 in the APITrap, 6 to 9 in honeybee samples, and 6 to 11 in pollen samples. Fibres were the most frequently found, accounting for an average of 91% of the total MPs detected in the APITrap, and similar values for fragments (5%) and films (4%). The MPs were predominantly coloured black, blue, green and red. Spectroscopy analysis confirmed the presence of up to five different synthetic polymers. Polyethylene terephthalate (PET) was the most common in case of fibres and similarly to polypropylene (PP), polyethylene (PE), polyacrylonitrile (PAN) and polyamide (PA) in non fibrous MPs. This study, based on citizen science and supported by beekeepers, highlights the potential of MPs to accumulate in beehives. It also shows that the APITrap provides a highly reliable and comprehensive approach for sampling in large-scale monitoring studies.
Показать больше [+] Меньше [-]A novel method to estimate the response of habitat types to nitrogen deposition
2024
Wamelink, G.W.W. | Goedhart, P.W. | Roelofsen, H.D. | Bobbink, R. | Posch, M. | van Dobben, H.F. | Biurrun, I. | Bonari, G. | Dengler, J. | Dítě, D. | Garbolino, E. | Jansen, J. | Jašková, A.K. | Lenoir, J. | Peterka, T.
Increasing nitrogen depositions adversely affect European landscapes, including habitats within the Natura2000 network. Critical loads for nitrogen deposition have been established to quantify the loss of habitat quality. When the nitrogen deposition rises above a habitat-specific critical load, the quality of the focal habitat is expected to be negatively influenced. Here, we investigate how the quality of habitat types is affected beyond the critical load. We calculated response curves for 60 terrestrial habitat types in the Netherlands to the estimated nitrogen deposition (EMEP-data). The curves for habitat types are based on the occurrence of their characteristic plant species in North-Western Europe (plot data from the European Vegetation Archive). The estimated response curves were corrected for soil type, mean annual temperature and annual precipitation. Evaluation was carried out by expert judgement, and by comparison with gradient deposition field studies. For 39 habitats the response to nitrogen deposition was judged to be reliable by five experts, while out of the 41 habitat types for which field studies were available, 25 showed a good agreement. Some of the curves showed a steep decline in quality and some a more gradual decline with increasing nitrogen deposition. We compared the response curves with both the empirical and modelled critical loads. For 41 curves, we found a decline already starting below the critical load.
Показать больше [+] Меньше [-]Pesticide residues in boreal arable soils : Countrywide study of occurrence and risks
2024
Hagner, M. | Rämö, S. | Soinne, H. | Nuutinen, V. | Muilu-Mäkelä, R. | Heikkinen, J. | Hyvönen, J. | Ohralahti, K. | Silva, V. | Osman, R. | Geissen, V. | Ritsema, C.J. | Keskinen, R.
Large volumes of pesticides are applied every year to support agricultural production. The intensive use of pesticides affects soil quality and health, but soil surveys on pesticide residues are scarce, especially for northern Europe. We investigated the occurrence of 198 pesticide residues, including both banned and currently used substances in 148 field sites in Finland. Results highlight that pesticide residues are common in the agricultural soils of Finland. A least one residue was found in 82% of the soils, and of those 32% contained five or more residues. Maximum total residue concentration among the conventionally farmed soils was 3043 μg/kg, of which AMPA and glyphosate contributed the most. Pesticide residues were also found from organically farmed soils, although at 75–90% lower concentrations than in the conventionally farmed fields. Thus, despite the application rates of pesticides in Finland being generally much lower than in most parts of central and southern Europe, the total residue concentrations in the soils occurred at similar or at higher levels. We also established that AMPA and glyphosate residues in soil are significantly higher in fields with cereal dominated rotations than in grass dominated or cereal–grass rotations. However, risk analyses for individual substances indicated low ecological risk for most of the fields. Furthermore, the total ecological risk associated with the mixtures of residues was mostly low except for 21% of cereal dominated fields with medium risk. The results showed that the presence of mixtures of pesticide residues in soils is a rule rather than an exception also in boreal soils. In highly chemicalized modern agriculture, the follow-up of the residues of currently used pesticides in national and international soil monitoring programs is imperative to maintain soil quality and support sustainable environment policies.
Показать больше [+] Меньше [-]Division and retention of floating plastic at river bifurcations
2024
van Thi, Khoa L. | van Emmerik, Tim H.M. | Vermeulen, Bart | Pham, Nhan Q. | Hoitink, A.J.F.
The transport of floating macroplastics (>2.5 cm) can be impacted by variations in hydrometeorological forcing. Several studies have demonstrated that river discharge, wind, and tides can either accelerate or impede the downstream travel path of plastic. However, there remains a substantial gap in our understanding of the impact of river geomorphological complexity on this process. In this context, the role that river bifurcations play in driving plastic dynamics under different hydrometeorological conditions is largely unexplored. Here, we show that specific plastic item categories react differently to the transport drivers, and bifurcation areas can function both as a retention and release site of plastic litter. We found that hard polyolefin appears to be the most responsive plastic to changes in flow discharge (ρ≈0.40, p≈0.01). Absolute wind velocity magnitude does not correlate to plastic transport. We explored correlations of the various plastic items types with wind vector components in all directions. Multilayer plastics correlated highest to the wind vector component that is most effective in driving plastics from an urban area to the river (ρ≈0.57, p≈0.0001). On a monthly scale, the bifurcation area retained up to 50% of the incoming upstream plastic flux. At other times, an additional 30% was released in the same area. Our results demonstrate how bifurcations distribute different plastic items types downstream under varied hydrometeorological conditions. These yields underscore the importance of assessing floating plastic transport in specific plastic item categories and taking river geomorphological complexity into account.
Показать больше [+] Меньше [-]Lower nitrate leaching from dairy cattle slurry compared to synthetic fertilizer calcium ammonium nitrate applied to grassland
2024
de Boer, Herman C. | van Mullekom, Mark | Smolders, Alfons J.P.
Nitrate leaching from agriculture can be reduced by the choice of fertilizer and a proper timing of its application. For permanent grassland grown under temperate conditions, nitrate leaching was hypothesized to be lower from dairy cattle slurry (CS) compared to synthetic fertilizer calcium ammonium nitrate (CAN), based on differences in chemical composition, consequential effects on nitrogen (N) conversion processes in soil, and resulting differences in synchronization of (nitrate) N availability and plant N uptake. We tested the hypothesis in a two-year field experiment on cut grassland on a leaching-sensitive sandy soil, fertilized each year with 320 kg ha−1 of plant-available N from either 100% top-dressed CAN or a combination of 40% from CAN and 60% from sod-injected CS, and measured effects on grass herbage yield, herbage N uptake, and nitrate concentration in pore water at 1.0 m depth. Our results show a comparable level of herbage N uptake for both treatments, allowing for a proper comparison of nitrate leaching at a similar level of plant-available N. Average nitrate concentration in pore water in the main leaching period (over winter) was after the first ‘dry’ growing season 44% lower for CS + CAN (41 mg l−1) compared to CAN only (73 mg l−1), and after the second ‘wet’ growing season 35% lower for CS + CAN (32 mg l−1) compared to CAN only (49 mg l−1). Nitrogen application increased nitrate concentration at 1.0 m depth not only in winter but also in the growing season. We conclude that for permanent grasslands in temperate regions, nitrate leaching from timely applied CS may be considerably lower than from CAN, which is different from previous assumptions.
Показать больше [+] Меньше [-]Short-term impacts of polyethylene and polyacrylonitrile microplastics on soil physicochemical properties and microbial activity of a marine terrace environment in maritime Antarctica
2024
Oliveira de Miranda, Caik | Lelis Leal de Souza, José João | Gonçalves Reynaud Schaefer, Carlos Ernesto | Huerta Lwanga, Esperanza | Nadal Junqueira Villela, Fernando
Evidence of microplastic (MP) pollution in Antarctic terrestrial environments reinforces concerns about its potential impacts on soil, which plays a major role in ecological processes at ice-free areas. We investigated the effects of two common MP types on soil physicochemical properties and microbial responses of a marine terrace from Fildes Peninsula (King George Island, Antarctica). Soils were treated with polyethylene (PE) fragments and polyacrylonitrile (PAN) fibers at environmentally relevant doses (from 0.001% to 1% w w−1), in addition to a control treatment (0% w w−1), for 22 days in a pot incubation experiment under natural field conditions. The short-term impacts of MPs on soil physical, chemical and microbial attributes seem interrelated and were affected by both MP dose and type. The highest PAN fiber dose (0.1%) increased macro and total porosity, but decreased soil bulk density compared to control, whereas PE fragments treatments did not affect soil porosity. Soil respiration increased with increasing doses of PAN fibers reflecting impacts on physical properties. Both types of MPs increased microbial activity (fluorescein diacetate hydrolysis), decreased the cation exchange capacity but, especially PE fragments, increased Na+ saturation. The highest dose of PAN fibers and PE fragments increased total nitrogen and total organic carbon, respectively, and both decreased the soil pH. We discussed potential causes for our findings in this initial assessment and addressed the need for further research considering the complexity of environmental factors to better understand the cumulative impacts of MP pollution in Antarctic soil environments.
Показать больше [+] Меньше [-]3D analysis of microplastic settling in algal suspensions
2024
de Rijk, V. | Barchiesi, M. | Kooi, M. | Koelmans, A.A.
The influence of algae presence in surface water on the settling velocities of microplastics is unknown, and determining it is challenging due to the turbidity of algal suspensions. Measuring the settling velocity of microplastics has traditionally relied on either manual measurement techniques or 2D Particle Tracking Velocimetry (PTV). This study introduces a 3D-PTV method tailored to determine the effects of algae (Synechoccocus sp.) on microplastic settling speeds in semi-large columns. We demonstrated that 3D PTV produces much more accurate results than 2D particle tracking. Testing the method in six experiments with varying algae concentrations revealed consistent results across the experiments and alignment with some theoretical approximations. The results were concurrent with calculated 2D speeds. No influence of algal density on settling velocities was found, which is highly relevant for microplastic fate modeling in eutrophic systems. We highlight the applicability and accuracy of 3D particle tracking velocimetry in further understanding microplastic settling behavior.
Показать больше [+] Меньше [-]Revealing the role of land-use features on macrolitter distribution in Swiss freshwaters
2024
Schreyers, L.J. | Erismann, R. | Erismann, S. | Ludwig, C. | Patel, B. | Filella, M. | van Emmerik, T.H.M.
Macrolitter, especially macroplastics, (> 0.5 cm) negatively impact freshwater ecosystems, where they can be retained along lake shores, riverbanks, floodplains or bed sediments. Long-term and large-scale assessments of macrolitter on riverbanks and lake shores provide an understanding of litter abundance, composition, and origin in freshwater systems. Combining macrolitter quantification with hydrometeorological variables allows further study of leakage, transport, and accumulation characteristics. Several studies have explored the role of hydrometeorological factors in influencing macrolitter distribution and found that river discharge, runoff, and wind only partially explains its distribution. Other factors, such as land-use features, have not yet been thoroughly investigated. In this study, we provide a country-scale assessment of land-use influence on macrolitter abundance in freshwater systems. We analyzed the composition of the most commonly found macrolitter items (referred to as ‘top items’, n = 42,565) sampled across lake shores and riverbanks in Switzerland between April 2020 and May 2021. We explored the relationship between eleven land-use features and macrolitter abundance at survey locations (n = 143). The land-use features included buildings, city centers, public infrastructure, recreational areas, forests, marshlands, vineyards, orchards, other land, and rivers and canals. The majority of top items are significantly and positively correlated with land-use features related to urban coverage, notably roads and buildings. Over 60% of top items were found to be correlated with either roads or buildings. Notably, tobacco, food and beverage-related products, as well as packaging and sanitary products, showed strong associations with these urban land-use features. Other types of items, however, did not exhibit a relationship with land-use features, such as industry and construction-related items. Ultimately, this highlights the need to combine measures at the local and regional/national scales for effective litter reduction.
Показать больше [+] Меньше [-]Effects of LDPE and PBAT plastics on soil organic carbon and carbon-enzymes : A mesocosm experiment under field conditions
2024
Jia, Xinkai | Yao, Yu | Tan, Gaowei | Xue, Sha | Liu, Mengjuan | Tang, Darrell W.S. | Geissen, Violette | Yang, Xiaomei
Although the effects of plastic residues on soil organic carbon (SOC) have been studied, variations in SOC and soil carbon-enzyme activities at different plant growth stages have been largely overlooked. There remains a knowledge gap on how various varieties of plastics affect SOC and carbon-enzyme activity dynamics during the different growing stages of plants. In this study, we conducted a mesocosm experiment under field conditions using low-density polyethylene and poly (butylene adipate-co-terephthalate) debris (LDPE-D and PBAT-D, 500–2000 μm (pieces), 0%, 0.05%, 0.1%, 0.2%, 0.5%, 1%, 2%), and low-density polyethylene microplastics (LDPE-M, 500–1000 μm (powder), 0%, 0.05%, 0.1%, 0.5%) to investigate SOC and C-enzyme activities (β-xylosidase, cellobiohydrolase, β-glucosidase) at the sowing, seedling, flowering and harvesting stages of soybean (Glycine Max). The results showed that SOC in the LDPE-D treatments significantly increased from the flowering to harvesting stage, by 12.69%–13.26% (p 0.05), but significantly decreased in the 0.05% and 0.1% LDPE-M treatments from the sowing to seedling stage (p 0.05). However, PBAT-D had no significant effect on SOC during the whole growing period. For C-enzyme activities, only LDPE-D treatments inhibited GH (17.22–38.56%), BG (46.7–66.53%) and CBH (13.19–23.16%), compared to treatment without plastic addition, from the flowering stage to harvesting stage. Meanwhile, C-enzyme activities and SOC responded nonmonotonically to plastic abundance and the impacts significantly varied among the growing stages, especially in treatments with PBAT-D (p 0.05). These risks to soil organic carbon cycling are likely mediated by the effects of plastic contamination and degradation soil microbe. These effects are sensitive to plastic characteristics such as type, size, and shape, which, in turn, affect the biogeochemical and mechanical interactions involving plastic particles. Therefore, further research on the interactions between plastic degradation processes and the soil microbial community may provide better mechanistic understanding the effect of plastic contamination on soil organic carbon cycling.
Показать больше [+] Меньше [-]