Уточнить поиск
Результаты 1311-1320 из 5,149
The occurrence of brominated flame retardants in the atmosphere of Gauteng Province, South Africa using polyurethane foam passive air samplers and assessment of human exposure Полный текст
2018
Katima, Zainab J. | Olukunle, Olubiyi I. | Kalantzi, Olga-loanna | Daso, Adegbenro P. | Okonkwo, Jonathan O.
Polyurethane foam passive samplers were deployed between May 2016 and January 2017 to evaluate concentrations of polybrominated diphenyl ethers (PBDEs), selected alternative flame retardants (AFRs) and total hexabromocyclododecane (HBCDD) (sum of α-, β-, and γ-HBCDD). The PUF air samplers were deployed in semi–urban, urban, industrial and landfill sites in Gauteng Province, South Africa. The acquired results presented a clear semi urban–industrial–urban–landfill concentration gradient for all BFRs measured. Taking into account 2 sampling periods (cold and warm periods) (n = 16), the atmospheric concentrations of ∑₉PBDEs, HBCDDs and ∑AFRs were 100–2820 pg m⁻³, 12–117 pg m⁻³ and 41–4660 pg m⁻³, respectively, for the sparsely populated residential area, densely populated residential area, industrial area and the landfill area. In all cases, BDE 47, 99, and 209 were the most dominant congeners with high detection frequencies. The highest calculated daily exposure dose in Gauteng Province atmosphere was 0.61 and 1.54 ng kg ⁻¹ – bw d ⁻¹ for adults and children respectively. The estimated total intake of PBDEs was 0.47–33.4 ng kg ⁻¹ – bw d ⁻¹, which was generally below the lowest adverse effect limit (LOAEL), suggesting that the residents of Gauteng Province may not be significantly affected as a result of their exposure to these pollutants through inhalation. However, this does not necessarily suggest that the pollutants are harmless to human health, since they have the tendency to bioaccumulate in biological systems. Incidentally, this is the first study from Africa to report on the atmospheric concentrations of PBDEs, HBCDDs and AFRs in urban, landfill and industrial areas. The findings from this study further highlight the contributory role of landfills as potential sources of BFRs into the atmosphere.
Показать больше [+] Меньше [-]Effects of ambient temperature on myocardial infarction: A systematic review and meta-analysis Полный текст
2018
Sun, Zhiying | Chen, Chen | Xu, Dandan | Li, Tiantian
Previous studies have suggested that ambient temperature is associated with the mortality and morbidity of myocardial infarction (MI) although consistency among these investigations is lacking. We performed a meta-analysis to investigate the relationship between ambient temperature and MI. The PubMed, Web of Science, and China National Knowledge Infrastructure databases were searched back to August 31, 2017. The pooled estimates for different temperature exposures were calculated using a random-effects model. The Cochran's Q test and coefficient of inconsistency (I2) were used to evaluate heterogeneity, and the Egger's test was used to assess publication bias. The exposure-response relationship of temperature-MI mortality or hospitalization was modeled using random-effects meta-regression. A total of 30 papers were included in the review, and 23 studies were included in the meta-analysis. The pooled estimates for the relationship between temperature and the relative risk of MI hospitalization was 1.016 (95% confidence interval [CI]: 1.004–1.028) for a 1 °C increase and 1.014 (95% CI: 1.004–1.024) for a 1 °C decrease. The pooled estimate of MI mortality was 1.639 (95% CI: 1.087–2.470) for a heat wave. The heterogeneity was significant for heat exposure, cold exposure, and heat wave exposure. The Egger's test revealed potential publication bias for cold exposure and heat exposure, whereas there was no publication bias for heat wave exposure. An increase in latitude was associated with a decreased risk of MI hospitalization due to cold exposure. The association of heat exposure and heat wave were immediate, and the association of cold exposure were delayed. Consequently, cold exposure, heat exposure, and exposure to heat waves were associated with an increased risk of MI. Further research studies are required to understand the relationship between temperature and MI in different climate areas and extreme weather conditions.
Показать больше [+] Меньше [-]Impact of particulate sediment, bentonite and barite (oil-drilling waste) on net fluxes of oxygen and nitrogen in Arctic-boreal sponges Полный текст
2018
Fang, James K.H. | Rooks, Christine A. | Krogness, Cathinka M. | Kutti, Tina | Hoffmann, Friederike | Bannister, Raymond J.
To meet the increasing global energy demand, expanding exploration for oil and gas reserves as well as associated drilling activities are expected in the Arctic-boreal region where sponge aggregations contribute to up to 90% of benthic biomass. These deep-water sponges along with their microbial endobionts play key roles in the nitrogen cycling in Arctic-boreal ecosystems. This study aimed to investigate the effects of drilling discharges and associated sediment resuspension events on net fluxes of oxygen, ammonium, nitrate and nitrite in three common deep-water sponge species in the form of explants. Sponges were exposed to suspended bentonite and barite, the primary particulate compounds in drilling waste, as well as suspended natural sediment particles for a period of 33 days (on average 10 mg L−1 for 12 h day−1). The exposure period was followed by a pollution abatement period for a further 33 days. No sponge mortality was observed during the experiment. However, exposure to these particles, especially to barite, led to reduced oxygen consumption by up to 33% that was linearly correlated with reduced nitrite/nitrate release by the sponges. The changes in net fluxes were accompanied by decreased tissue oxygenation by up to 54% within the sponges. These findings reveal the effects of fine particles on sponge metabolic processes by reducing aerobic respiration and microbial nitrification, and possibly by favouring anaerobic processes such as microbial denitrification. Most of the sponge responses recovered to their control levels upon the pollution abatement period, but the effects caused by barite may not be reversible. Our findings provide the first insight into the ecological consequences of oil and gas drilling activities on sponge-mediated nitrogen cycling in the Arctic-boreal region.
Показать больше [+] Меньше [-]Associations of hemoglobin biomarker levels of acrylamide and all-cause and cardiovascular disease mortality among U.S. adults: National Health and Nutrition Examination Survey 2003–2006 Полный текст
2018
Huang, Mengmeng | Jiao, Jingjing | Wang, Jun | Chen, Xinyu | Zhang, Yu
The potential hazards of acrylamide (AA) have been proposed due to its lifelong exposure. However, the association between AA exposure and mortality remains unclear.We evaluated the prospective association of AA hemoglobin adducts (HbAA and HbGA) with all-cause and cardiovascular disease (CVD) mortality in U.S. population from National Health and Nutrition Examination Survey (NHANES) 2003–2006.We followed 5504 participants who were ≥25 years of age for an average of 6.7 years at the baseline examination with annual linkage to the NHANES statistics database. Using AA hemoglobin biomarkers [HbAA, HbGA, sum of HbAA and HbGA (HbAA + HbGA), and ratio of HbGA to HbAA (HbGA/HbAA)], we determined mortality from all-causes and CVD through Cox proportional hazard regression analysis with multivariable adjustments both in non-smoker group and smoker group. In addition, subgroup analyses and sensitivity analyses were further conducted.After adjusting for sociodemographic, life behavioral and cardiovascular risk factors in non-smoker group, HbAA was positively associated with all-cause mortality (p for trend = 0.0197) and non-CVD mortality (p for trend = 0.0124). HbGA and HbGA/HbAA were inversely associated with all-cause mortality (p for trend = 0.0117 and 0.0098, respectively) and CVD mortality (p for trend=0.0009 and 0.0036, respectively). The multivariable adjusted hazard ratios (HRs) [95% confidence intervals (CIs)] of the upper three quartiles were 0.472 (95% CI: 0.283–0.786), 0.517 (95% CI: 0.299–0.894) and 0.470 (95% CI: 0.288–0.766) between HbGA/HbAA and all-cause mortality comparing with the lowest quartile, respectively. No significant associations were found between HbAA + HbGA and mortality in non-smoker group, and between all AA hemoglobin biomarkers and mortality in smoker group.Hemoglobin biomarker levels of AA were strongly associated with mortality in general U.S. non-smoker adults. These findings proposed a continuous public health concern in relation to environmental and dietary exposure to AA.
Показать больше [+] Меньше [-]Seasonal variations and sources of atmospheric polycyclic aromatic hydrocarbons and organochlorine compounds in a high-altitude city: Evidence from four-year observations Полный текст
2018
Gong, Ping | Wang, Xiaoping | Sheng, Jiujiang | Wang, Hailong | Yuan, Xiaohua | He, Yuanqing | Qian, Yun | Yao, Tandong
Lijiang is a high-altitude city located on the eastern fringe of the Tibetan Plateau, with complex seasonal atmospheric circulations (i.e. westerly wind, Indian Monsoon, and East Asia Monsoon). Very few previous studies have focused on seasonal variations and sources of organic pollutants in Lijiang. In this study, a four-year air campaign from June 2009 to July 2013 was conducted to investigate the temporal trends and the sources of polycyclic aromatic hydrocarbons (PAHs) and organochlorine compounds [including organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs)]. The atmospheric PAH concentrations in winter are 2–3 times of those in summer, probably because of the combined result of enhanced local emission and long-range atmospheric transport (LRAT) during winter. Traffic pollution was the primary local source of PAHs, while biomass burning is the dominant LRAT source. OCPs and PCBs also mainly underwent LRAT to reach Lijiang. The peak concentrations of most of OCPs occurred in pre-monsoon season and winter, which were carried by air masses from Myanmar and India through westerly winds. As compared with other sites of the Tibetan Plateau, without the direct barrier of the Himalaya, Lijiang is easily contaminated by the incursion of polluted air masses.
Показать больше [+] Меньше [-]Characterization and cytotoxicity of PAHs in PM2.5 emitted from residential solid fuel burning in the Guanzhong Plain, China Полный текст
2018
Sun, Jian | Shen, Zhenxing | Zeng, Yaling | Niu, Xinyi | Wang, Jinhui | Cao, Junji | Gong, Xuesong | Xu, Hongmei | Wang, Taobo | Liu, Hongxia | Yang, Liu
The emission factors (EFs) of polycyclic aromatic hydrocarbons (PAHs) in PM2.5 were measured from commonly used stoves and fuels in the rural Guanzhong Plain, China. The toxicity of the PM2.5 also was measured using in vitro cellular tests. EFs of PAHs varied from 0.18 mg kg−1 (maize straw charcoal burning in a clean stove) to 83.3 mg kg−1 (maize straw burning in Heated Kang). The two largest influencing factors on PAH EFs were air supply and volatile matter proportion in fuel. Improvements in these two factors could decrease not only EFs of PAHs but also the proportion of 3-ring to 5-ring PAHs. Exposure to PM2.5 extracts caused a concentration-dependent decline in cell viability but an increase in reactive oxygen species (ROS), tumor necrosis factor a (TNF-α) and interleukin 6 (IL-6). PM2.5 emitted from maize burning in Heated Kang showed the highest cytotoxicity, and EFs of ROS and inflammatory factors were the highest as well. In comparison, maize straw charcoal burning in a clean stove showed the lowest cytotoxicity, which indicated a clean stove and fuel treatment were both efficient methods for reducing cytotoxicity of primary PM2.5. The production of these bioreactive factors were highly correlated with 3-ring and 4-ring PAHs. Specifically, pyrene, anthracene and benzo(a)anthracene had the highest correlations with ROS production (R = 0.85, 0.81 and 0.80, respectively). This study shows that all tested stoves emitted PM2.5 that was cytotoxic to human cells; thus, there may be no safe levels of exposure to PM2.5 emissions from cooking and heating stoves using solid fuels. The study may also provide a new approach for evaluating the cytotoxicity of primary emitted PM2.5 from solid fuel burning as well as other PM2.5 sources.
Показать больше [+] Меньше [-]Contrasting effects of photochemical and microbial degradation on Cu(II) binding with fluorescent DOM from different origins Полный текст
2018
Xu, Huacheng | Guan, Dong-Xing | Zou, Li | Lin, Hui | Guo, Laodong
Effects of photochemical and microbial degradation on variations in composition and molecular-size of dissolved organic matter (DOM) from different sources (algal and soil) and the subsequent influence on Cu(II) binding were investigated using UV–Vis, fluorescence excitation-emission matrices coupled with parallel factor analysis, flow field-flow fractionation (FlFFF), and metal titration. The degradation processes resulted in an initial rapid decline in the bulk dissolved organic carbon and chromophoric and fluorescent DOM components, followed by a small or little decrease. Specifically, photochemical reaction decreased the aromaticity, humification and apparent molecular weights of all DOM samples, whereas a reverse trend was observed during microbial degradation. The FlFFF fractograms revealed that coagulation of both protein- and humic-like DOM induced an increase in molecular weights for algal-DOM, while the molecular weight enhancement for allochthonous soil samples was mainly attributed to the self-assembly of humic-like components. The Cu(II) binding capacity of algal-derived humic-like and fulvic-like DOM consistently increased during photo- and bio-degradation, while the soil-derived DOM exhibited a slight decline in Cu(II) binding capacity during photo-degradation but a substantial increase during microbial degradation, indicating source- and degradation-dependent metal binding heterogeneities. Pearson correlation analysis demonstrated that the Cu(II) binding potential was mostly related with aromaticity and molecular size for allochthonous soil-derived DOM, but was regulated by both DOM properties and specific degradation processes for autochthonous algal-derived DOM. This study highlighted the coupling role of inherent DOM properties and external environmental processes in regulating metal binding, and provided new insights into metal-DOM interactions and the behavior and fate of DOM-bound metals in aquatic environments.
Показать больше [+] Меньше [-]Use of spatiotemporal characteristics of ambient PM2.5 in rural South India to infer local versus regional contributions Полный текст
2018
Kumar, M Kishore | Sreekanth, V. | Salmon, Maëlle | Tonne, Cathryn | Marshall, Julian D.
This study uses spatiotemporal patterns in ambient concentrations to infer the contribution of regional versus local sources. We collected 12 months of monitoring data for outdoor fine particulate matter (PM₂.₅) in rural southern India. Rural India includes more than one-tenth of the global population and annually accounts for around half a million air pollution deaths, yet little is known about the relative contribution of local sources to outdoor air pollution. We measured 1-min averaged outdoor PM₂.₅ concentrations during June 2015–May 2016 in three villages, which varied in population size, socioeconomic status, and type and usage of domestic fuel. The daily geometric-mean PM₂.₅ concentration was ∼30 μg m⁻³ (geometric standard deviation: ∼1.5). Concentrations exceeded the Indian National Ambient Air Quality standards (60 μg m⁻³) during 2–5% of observation days. Average concentrations were ∼25 μg m⁻³ higher during winter than during monsoon and ∼8 μg m⁻³ higher during morning hours than the diurnal average. A moving average subtraction method based on 1-min average PM₂.₅ concentrations indicated that local contributions (e.g., nearby biomass combustion, brick kilns) were greater in the most populated village, and that overall the majority of ambient PM₂.₅ in our study was regional, implying that local air pollution control strategies alone may have limited influence on local ambient concentrations. We compared the relatively new moving average subtraction method against a more established approach. Both methods broadly agree on the relative contribution of local sources across the three sites. The moving average subtraction method has broad applicability across locations.
Показать больше [+] Меньше [-]Estimation of p,p’-DDT degradation in soil by modeling and constraining hydrological and biogeochemical controls Полный текст
2018
Sanka, Ondrej | Kalina, Jiří | Lin, Yan | Deutscher, Jan | Futter, Martyn | Butterfield, Dan | Melymuk, Lisa | Brabec, Karel | Nizzetto, Luca
Despite not being used for decades in most countries, DDT remains ubiquitous in soils due to its persistence and intense past usage. Because of this it is still a pollutant of high global concern. Assessing long term dissipation of DDT from this reservoir is fundamental to understand future environmental and human exposure. Despite a large research effort, key properties controlling fate in soil (in particular, the degradation half-life (τₛₒᵢₗ)) are far from being fully quantified. This paper describes a case study in a large central European catchment where hundreds of measurements of p,p’-DDT concentrations in air, soil, river water and sediment are available for the last two decades. The goal was to deliver an integrated estimation of τₛₒᵢₗ by constraining a state-of-the-art hydrobiogeochemical-multimedia fate model of the catchment against the full body of empirical data available for this area. The INCA-Contaminants model was used for this scope. Good predictive performance against an (external) dataset of water and sediment concentrations was achieved with partitioning properties taken from the literature and τₛₒᵢₗ estimates obtained from forcing the model against empirical historical data of p,p’-DDT in the catchment multicompartments. This approach allowed estimation of p,p’-DDT degradation in soil after taking adequate consideration of losses due to runoff and volatilization. Estimated τₛₒᵢₗ ranged over 3000–3800 days. Degradation was the most important loss process, accounting on a yearly basis for more than 90% of the total dissipation. The total dissipation flux from the catchment soils was one order of magnitude higher than the total current atmospheric input estimated from atmospheric concentrations, suggesting that the bulk of p,p’-DDT currently being remobilized or lost is essentially that accumulated over two decades ago.
Показать больше [+] Меньше [-]Rapid debromination of polybrominated diphenyl ethers (PBDEs) by zero valent metal and bimetals: Mechanisms and pathways assisted by density function theory calculation Полный текст
2018
Wang, Rui | Tang, Ting | Lu, Guining | Huang, Kaibo | Yin, Hua | Lin, Zhang | Wu, Fengchang | Dang, Zhi
Polybrominated diphenyl ethers (PBDEs) undergo debromination when they were exposed in zerovalent metal or bimetallic systems. Yet their debromination pathways and mechanisms in these systems were not well understood. Here we reported the debromination pathways of three BDE congeners (BDE-21, 25 and 29) by nano-zerovalent iron (n-ZVI). All these BDE congeners have three bromine substituents that were located in ortho-, meta- and para-positions. Results demonstrated that BDE-21, 25 and 29 preferentially debrominate meta-, ortho- and para-bromines, respectively, suggesting that bromine substituent at each position (i.e. ortho-, meta- or para-) of PBDEs can be preferentially removed. Singly occupied molecular orbitals of BDE anions are well correlated with their actual debromination pathways, which successfully explain why these BDE congeners exhibit certain debromination pathways in n-ZVI system. In addition, microscale zerovalent zinc (m-ZVZ), iron-based bimetals (Fe/Ag and Fe/Pd) were also used to debrominate PBDEs, with BDE-21 as target pollutant. We found that the debromination pathways of BDE-21 in m-ZVZ and Fe/Ag systems are the same to those in n-ZVI system, but were partially different from those in Fe/Pd systems. The debromination of BDE-21 in Pd-H2 system as well as the solvent kinetic isotope effect in single metal and bimetallic systems suggests that H atom transfer is the dominant mechanism in Fe/Pd system, while e-transfer is still the dominant mechanism in Fe/Ag system.
Показать больше [+] Меньше [-]