Уточнить поиск
Результаты 1331-1340 из 7,214
Heterogeneous HONO formation deteriorates the wintertime particulate pollution in the Guanzhong Basin, China
2022
Li, Xia | Bei, Naifang | Wu, Jiarui | Wang, Ruonan | Liu, Suixin | Liu, Lang | Jiang, Qian | Tie, Xuexi | Molina, Luisa T. | Li, Guohui
Despite implementation of strict emission mitigation measures since 2013, heavy haze with high levels of secondary aerosols still frequently engulfs the Guanzhong Basin (GZB), China, during wintertime, remarkably impairing visibility and potentially causing severe health issues. Although the observed low ozone (O₃) concentrations do not facilitate the photochemical formation of secondary aerosols, the measured high nitrous acid (HONO) level provides an alternate pathway in the GZB. The impact of heterogeneous HONO sources on the wintertime particulate pollution and atmospheric oxidizing capability (AOC) is evaluated in the GZB. Simulations by the Weather Research and Forecast model coupled with Chemistry (WRF-Chem) reveal that the observed high levels of nitrate and secondary organic aerosols (SOA) are reproduced when both homogeneous and heterogeneous HONO sources are considered. The heterogeneous sources (HET-sources) contribute about 98% of the near-surface HONO concentration in the GZB, increasing the hydroxyl radical (OH) and O₃ concentration by 39.4% and 22.0%, respectively. The average contribution of the HET-sources to SOA, nitrate, ammonium, and sulfate in the GZB is 35.6%, 20.6%, 12.1%, and 6.0% during the particulate pollution episode, respectively, enhancing the mass concentration of fine particulate matters (PM₂.₅) by around 12.2%. Our results suggest that decreasing HONO level or the AOC becomes an effective pathway to alleviate the wintertime particulate pollution in the GZB.
Показать больше [+] Меньше [-]Nickel bioaccessibility in soils with high geochemical background and anthropogenic contamination
2022
Ding, Song | Guan, Dong-Xing | Dai, Zhi-Hua | Su, Jing | Teng, H Henry | Ji, Junfeng | Liu, Yizhang | Yang, Zhongfang | Ma, Lena Q.
Abnormally high concentrations of metals including nickel (Ni) in soils result from high geochemical background (HB) or anthropogenic contamination (AC). Metal bioaccessibility in AC-soils has been extensively explored, but studies in HB-soils are limited. This study examined the Ni bioaccessibility in basalt and black shale derived HB-soils, with AC-soils and soils without contamination (CT) being used for comparison. Although HB- and AC-soils had similar Ni levels (123 ± 43.0 vs 155 ± 84.7 mg kg⁻¹), their Ni bioaccessibility based on the gastric phase of the Solubility Bioaccessibility Research Consortium (SBRC) in vitro assay was different. Nickel bioaccessibility in HB-soils was 6.42 ± 3.78%, 2-times lower than the CT-soils (12.0 ± 9.71%) and 6-times lower than that in AC-soils (42.6 ± 16.3%). Based on the sequential extraction, a much higher residual Ni fractionation in HB-soils than that in CT- and AC-soils was observed (81.9 ± 9.52% vs 68.6 ± 9.46% and 38.7 ± 16.0%). Further, correlation analysis indicate that the available Ni (exchangeable + carbonate-bound + Fe/Mn hydroxide-bound) was highly correlated with Ni bioaccessibility, which was also related to the organic carbon content in soils. The difference in co-localization between Ni and other elements (Fe, Mn and Ca) from high-resolution NanoSIMS analysis provided additional explanation for Ni bioaccessibility. In short, based on the large difference in Ni bioaccessibility in geochemical background and anthropogenic contaminated soils, it is important to base contamination sources for proper risk assessment of Ni-contaminated soils.
Показать больше [+] Меньше [-]Assessing public health and economic loss associated with black carbon exposure using monitoring and MERRA-2 data
2022
Black carbon (BC) exposure in China continues to be relatively high, prompting researchers to assess BC exposure levels using data from monitoring sites, satellite remote sensing, and models. However, data regarding the application of a combined strategy comprising the analysis of monitoring data and various types of data to simulate BC exposure levels are lacking. Hence, the current study seeks to estimate short- and long-term BC exposure levels by combining national monitoring data with data from the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2). Furthermore, this study attempts to improve the spatio-temporal resolution of BC exposure levels using Bayesian maximum entropy (BME). The BME model performed well in terms of estimating short- (R² = 0.74 and RMSE = 1.76 μg/m³) and long-term (R² = 0.76 and RMSE = 1.3 μg/m³) exposure. Premature mortalities and economic losses were also assessed by applying localised concentration–response coefficients simulated in China. A total of 74,500 (95% confidence interval (CI): 23,900–124,500) and 538,400 (95% CI: 495,000–581,300) all-cause premature mortality cases were found to be associated with short- and long-term BC exposure, respectively. Meanwhile, short-term BC exposure was associated with economic losses ranging from 7.5 to 13.2 billion US dollars (USD) (1 USD = 6.36 RMB on January 19, 2022) based on amended human capital (AHC) and willingness to pay (WTP), accounting for 0.06%–0.1% of China's total gross domestic product (GDP) in 2017 (1.2 × 10⁴ billion USD), respectively. The economic losses for long-term exposure varied from 53 to 93.2 billion USD based on AHC and WTP, accounting for 0.4%–0.8% of China's total GDP in 2017, respectively.
Показать больше [+] Меньше [-]Fabrication of activated carbon supported modified with bimetallic-platin ruthenium nano sorbent for removal of azo dye from aqueous media using enhanced ultrasonic wave
2022
Herein, activated carbon supported modified with bimetallic-platin ruthenium nano sorbent (PtRu@AC) was synthesized by a thermal decomposition process and used in the removal of methylene blue (MB) from aqueous solutions. The synthesized nano sorbents were characterized by X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and X-ray Photoelectron Spectroscopy (XPS) spectroscopic techniques. The data obtained from characterization studies showed that PtRu@AC nano sorbent was highly crystalline and in a form of PtRu alloy with a monodispersed composition. The results indicated that the maximum adsorption capacity (qemax) for the removal of MB with PtRu@AC under optimum conditions was detected to be 1.788 mmol/g (569.4 mg/g). The experimental kinetic results of the study revealed that the adsorption of methylene blue was found to be more compatible with the false second-order model compared to some tested models. Calculations for thermodynamic functions including enthalpy change (ΔHo), entropy change (ΔSo), and Gibbs free energy change (ΔGo) values were performed to get an idea about the adsorption mechanism. As a result, the synthesized PtRu@AC nano adsorbent was detected as a highly effective adsorbent material in the removal of MB from aquatic mediums.
Показать больше [+] Меньше [-]Towards a North Pacific long-term monitoring program for ocean plastic pollution: A systematic review and recommendations for shorelines
2022
Increased organized monitoring is key to improving our understanding of marine debris on shorelines. Shorelines are demonstrated sinks for marine debris but efforts to quantify debris often fail to capture and report core variables and survey design techniques necessary to ensure study repeatability, comparability and to provide meaningful results. Here, we systematically review the available literature regarding marine debris distribution and abundance on shorelines of countries bordering the North Pacific Ocean (NPO), which are demonstrated to have unusually high marine debris abundance and diversity both at the ocean surface and stranded on shorelines. The majority of the 81 papers documenting shoreline debris in the NPO were studies that took place for less than one year (76.5%). Additionally, most sampling sites were visited only once (57.3%). Precise site locations (GPS coordinates) were provided in only 44.4% of the evaluated studies. Debris quantities were reported using nine different measurement units, with item counts per area and item counts per mass being most commonly reported for macro- and microplastics, respectively. Taken together, most of the reviewed studies could not be repeated by others given the information provided. We propose a series of guidelines with regard to marine debris shoreline sampling metrics, indicators, methods, and target goals in the NPO in order to improve comparability and repeatability. These follow the basic tenets of environmental survey design, which when not accounted for, can limit the applicability and value of large-scale shoreline monitoring efforts.
Показать больше [+] Меньше [-]Enhanced settling of microplastics after biofilm development: A laboratory column study mimicking wastewater clarifiers
2022
The settling of microplastics (MPs) is crucial for their removal from municipal wastewater treatment plants (WWTPs) and sedimentation in static waterbodies, where they can accumulate in bottom sediments. Biofilm formation on MPs enhances their aggregation with other particles, thereby changing their density and size and altering their settling rates. However, only a few studies have investigated the settling of MPs of different sizes and materials. Specifically, the settling of small-sized MPs (<150 μm) has been poorly documented. In this study, cylindrical and fragmented particles of four polymer types (high-density polyethylene (HDPE), polypropylene (PP), polystyrene (PS), and poly(ethylene terephthalate) (PET)) were used to investigate the settling or floating of reference MPs (20–130 μm) in a custom-made column that simulated a primary sedimentation tank in a typical WWTP before and after incubation in wastewater influent. The settling velocity of the reference MP particles was strongly influenced by the particle size and density. The settled fractions of all the cylindrical reference MPs increased significantly (up to 5 times) due to biofilm formation at overflow velocities of 0.15, 0.26, and 0.40 mm s⁻¹. This was observed even for HDPE and PP (density <1 g cm⁻³) after biofilm formation. The fragmented reference MPs showed complex and rather unpredictable behavior, possibly due to their irregular shape. Generally, the settling of pristine PS and PET in the laboratory tests was consistent with the theoretical predictions obtained using Stokes’ law. The experimental findings of this study can be used to develop models that predict the removal efficiencies of MPs in WWTPs and to estimate the sinking of MPs to bottom sediments of static waterbodies.
Показать больше [+] Меньше [-]Differential effects of microplastic exposure on anuran tadpoles: A still underrated threat to amphibian conservation?
2022
Microplastics (MPs) have been reported to threaten a wide variety of terrestrial, marine, and freshwater organisms. However, knowledge about the effects of MPs on anuran amphibians, one of the most threatened taxa worldwide, is still limited. To assess the effects of MPs on the growth and survival of the Italian agile frog (Rana latastei) and green toad (Bufotes balearicus), we exposed tadpoles to three different concentrations (1, 7, and 50 mg L⁻¹) of an environmental relevant mixture of microplastics (HPDE, PVC, PS and PES), recording data on their activity level, weight and mortality rates. While the effects of MPs on green toad tadpoles were negligible, Italian agile frog tadpoles were severely affected both in terms of growth and activity level, with high mortality rates even at the lowest MP density (1 mg L⁻¹). Our results suggest that MP contamination of freshwater habitats may contribute to the ongoing decline of anuran amphibians.
Показать больше [+] Меньше [-]Co-transport and co-release of Eu(III) with bentonite colloids in saturated porous sand columns: Controlling factors and governing mechanisms
2022
Accurate prediction of the colloid-driven transport of radionuclides in porous media is critical for the long-term safety assessment of radioactive waste disposal repository. However, the co-transport and corelease process of radionuclides with colloids have not been well documented, the intrinsic mechanisms for colloids-driven retention/transport of radionuclides are still pending for further discussion. Thus the controlling factors and governing mechanisms of co-transport and co-release behavior of Eu(III) with bentonite colloids (BC) were discussed and quantified by combining laboratory-scale column experiments, colloid filtration theory and advection dispersion equation model. The results showed that the role of colloids in facilitating or retarding the Eu(III) transport in porous media varied with cations concentration, pH, and humic acid (HA). The transport of Eu(III) was facilitated by the dispersed colloids under the low ionic strength and high pH conditions, while was impeded by the aggregated colloids cluster. The enhancement of Eu(III) transport was not monotonically risen with the increase of colloids concentration, the most optimized colloids concentration in facilitating Eu(III) transport was approximately 150 mg L⁻¹. HA showed significant promotion on both Eu(III) and colloid transport because of not only its strong Eu(III) complexion ability but also the increased dispersion of HA-coated colloid particles. The HA and BC displayed a synergistic effect on Eu(III) transport, the co-transport occurred by forming the ternary BC-HA-Eu(III) hybrid. The transport patterns could be simulated well with a two-site model that used the advection dispersion equation by reflecting the blocking effect. The retarded Eu(III) on the stationary phase was released and remobilized by the introduction of colloids, or by a transient reduction in cation concentration. The findings are essential for predicting the geological fate and the migration risk of radionuclides in the repository environment.
Показать больше [+] Меньше [-]Hydrogen sulfide manages hexavalent chromium toxicity in wheat and rice seedlings: The role of sulfur assimilation and ascorbate-glutathione cycle
2022
Singh, Sani kumar | Suhel, Mohammad | Tajammul Ḥusain, | Prasad, Sheo Mohan | Singh, Vijay Pratap
The role of hydrogen sulfide (H₂S) is well known in the regulation of abiotic stress such as toxic heavy metal. However, mechanism(s) lying behind this amelioration are still poorly known. Consequently, the present study was focused on the regulation/mitigation of hexavalent chromium (Cr(VI) toxicity by the application of H₂S in wheat and rice seedlings. Cr(VI) induced accumulation of reactive oxygen species and caused protein oxidation which negatively affect the plant growth in both the cereal crops. We noticed that Cr(VI) toxicity reduced length of wheat and rice seedlings by 21% and 19%, respectively. These reductions in length of both the cereal crops were positively related with the down-regulation in the ascorbate-glutathione cycle, and were recovered by the application NaHS (a donor of H₂S). Though exposure of Cr(VI) slightly stimulated sulfur assimilation but addition of H₂S further caused enhancement in sulfur assimilation, suggesting its role in the H₂S-mediated Cr(VI) stress tolerance in studied cereal crops. Overall, the results revealed that H₂S renders Cr(VI) stress tolerance in wheat and rice seedlings by stimulating sulfur assimilation and ascorbate-glutathione which collectively reduce protein oxidation and thus, improved growth was observed.
Показать больше [+] Меньше [-]Effect of varying pH and co-existing microcystin-LR on time- and concentration-dependent cadmium sorption by goethite-modified biochar derived from distillers’ grains
2022
Zhao, Yu | Li, Jieming
Cadmium (Cd) is one dangerous and widespread heavy metal that of great environmental concern. To cost-efficiently adsorb aqueous Cd under influence of various factors, this study succeeded in fabricating goethite-modified biochar (GBC) derived from distillers’ grains (DGs) for Cd sorption of different concentrations (10–100 mg L⁻¹) at pH of 3, 6 and 8 with and without microcystin-LR (MC-LR). Sorption kinetics and isotherms data revealed that Cd sorption capacity of GBC and unmodified BC increased as pH elevated from 3 to 6 but stabilized when pH further elevated to 8. Pseudo-second-order and Langmuir models more accurately fitted to sorption data for both BCs, implying monolayer chemisorption of Cd onto BCs. GBC exhibited more robust sorption for each Cd concentration than unmodified BC, with the maximum sorption capacity of around 28 mg g⁻¹ at neutral and weak alkaline pH. Notably, goethite-modification obviously increased bulk polarity, specific surface area, porosity and surface oxygenic group abundance of BC, thus strongly enhancing Cd sorption by creating more sorption sites mainly via pore-filling, electrostatic attraction, and also via complexation and cation exchange. Co-existing MC-LR of 100 μg L⁻¹ did not obviously affect Cd sorption by both BCs for most Cd levels at each pH, mostly because sorption mechanisms diverged between MC-LR and Cd to largely avoid their competition for sorption sties. Thus, goethite could modify DG-BC as promising and cost-efficient sorbent for Cd even with co-existing MC-LR, especially at neutral and weak alkaline pH that common in the nature. This study was greatly implicated in modifying and applying DG-BC for Cd immobilization in MC-LR laden waters with various pH circumstances.
Показать больше [+] Меньше [-]