Уточнить поиск
Результаты 1341-1350 из 4,940
Estimating the relative magnitudes of adsorption to solid-water and air/oil-water interfaces for per- and poly-fluoroalkyl substances
2019
Brusseau, Mark L.
Per- and poly-fluoroalkyl substances (PFAS) have attracted considerable concern due to their widespread occurrence in the environment and potential human health risks. Given the complexity of PFAS retention in multi-phase systems, it would be useful for characterization and modeling purposes to be able to readily determine the relative significance of the individual retention processes for a given PFAS and set of subsurface conditions. A quantitative-structure/property-relationship (QSPR) analysis was conducted for adsorption of PFAS by soils, sediments, and granular activated carbon (GAC), and integrated with a prior analysis conducted for adsorption to air-water and oil-water interfaces. The results demonstrated that a model employing molar volume provided reasonable predictions of organic-carbon normalized soil/sediment adsorption coefficients (log Kₒc), GAC-adsorption coefficients (log Kd), and air/oil-water interfacial adsorption coefficients (log Kᵢ) for PFAS. The relative magnitudes of solid-water and air/oil-water interfacial adsorption were compared as a function of controlling variables. A nomograph was developed that provides a first-order determination of the relative significance of these interfacial adsorption processes in multi-phase porous-media systems.
Показать больше [+] Меньше [-]In vitro and in vivo endocrine disrupting effects of the azole fungicides triticonazole and flusilazole
2019
Draskau, Monica Kam | Boberg, Julie | Taxvig, Camilla | Pedersen, Mikael | Frandsen, Henrik Lauritz | Christiansen, Sofie | Svingen, Terje
Azoles are effective antifungal agents used in both medicine and agriculture. They typically work by inhibiting cytochrome P450 enzymes, primarily CYP51 of the ergosterol biosynthesis pathway, thus damaging the fungal cell membrane. However, apart from their desired antifungal properties, several azoles also exhibit endocrine disrupting properties in mammals, both in vitro and in vivo. Here, we have tested two currently used agricultural azole fungicides, triticonazole and flusilazole, for their in vitro anti-androgenic activity and potential effects on reproductive parameters. Both fungicides showed strong androgen receptor (AR) antagonism and disruption of steroid biosynthesis in vitro. Following gestational exposure to flusilazole (15 or 45 mg/kg bw/day) or triticonazole (150 or 450 mg/kg bw/day) in time-mated Sprague Dawley rats, triticonazole induced shorter male anogenital distance (AGD). Flusilazole exposure did not affect the AGD, but altered fetal male blood hormone profile, with increased androstenedione and decreased estrone levels. Flusilazole and triticonazole have dissimilar effects on reproductive parameters in vivo, but both show endocrine disrupting activities.
Показать больше [+] Меньше [-]An assessment of the ability to ingest and excrete microplastics by filter-feeders: A case study with the Mediterranean mussel
2019
Gonçalves, Cátia | Martins, Marta | Sobral, Paula | Costa, Pedro M. | Costa, Maria H.
Plastic debris has been recognized as a growing threat to marine biota due to its widespread distribution and possible interactions with marine species. Concerns over the effects of plastic polymers in marine ecosystems is reflected in the high number of toxicological studies, regarding microplastics (<5 mm) and marine fauna. Although several studies reported that organisms ingest and subsequently eliminate microplastics (MP), the potential effects at organ and tissue level remain unclear, especially considering exposure to different microplastic sizes and concentrations. The present study aimed at investigating potential pathophysiological effects of the ingestion of MP by marine filter-feeders. For the purpose, Mediterranean mussel (Mytilus galloprovincialis) was exposed to spherical polystyrene MP (2 and 10 μm Ø) over short- and medium-term exposure periods, under single and combined concentrations that represent high, yet realistic doses (10 and 1000 MP mL−1). Overall, results suggest rapid MP’ clearance from water column by filtering, regardless of MP size. Ingestion occurred, identified by MP in the lumen of the gut (mostly in midgut region), followed by excretion through faeces. However, no MP were found in gills or digestive gland diverticula. Biochemical indicators for oxidative stress were generally irresponsive regardless of organ and time of exposure. Small foci of haemocytic infiltration in gastric epithelia were found, albeit not clearly related to MP ingestion. Globally, no evident histopathological damage was recorded in whole-body sections of exposed animals. The present findings highlight the adaptative ability of filter-feeding bivalves to cope with filtration of suspended MP, resulting in rapid elimination and reduced internal damage following ingestion of spherical MP. Nevertheless, the fact that the animals are able to translocate MP to the gut reveals that filter feeding organisms may indeed became a target of concern for fragmented materials with smaller, mixed sizes and sharper edges.
Показать больше [+] Меньше [-]Transport and retention of reduced graphene oxide materials in saturated porous media: Synergistic effects of enhanced attachment and particle aggregation
2019
Xia, Tianjiao | Ma, Pengkun | Qi, Yu | Zhu, Lingyan | Qi, Zhichong | Chen, Wei
The increasing production and use of graphene-based nanomaterials (e.g., graphene oxide (GO) and reduced graphene oxide (RGO)) will lead to their environmental release. To date, transport of RGOs in saturated porous media is poorly understood. Here, we examined the transport behaviors of three RGO materials obtained by reducing a GO product with commonly used reducing agents – N₂H₄, NaBH₄ and L-ascorbic acid (referred to as N₂H₄-RGO, NaBH₄-RGO and VC-RGO, respectively). When the dominant background cation was Na⁺, K⁺ or Mg²⁺, the mobility of the RGOs and GO in saturated quartz sand correlated well with their surface C/O ratio. Interestingly, the lower mobility of the more reduced materials (the ones with higher C/O values) was not only the results of their less negative surface charges and larger particle sizes, but also the outcome of their greater hydrophobicity, in line with the calculated extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) profiles. Counterintuitively, when the background cation was Ca²⁺, the least reduced material among the three RGOs, VC-RGO, exhibited the lowest mobility. Analysis of electrophoretic and aggregation properties, as well as pH-effect experiments, indicated that the surprisingly low mobility of VC-RGO was attributable to the strong cation-bridging effect (primarily Ca²⁺-bridging between RGO and quartz sand) associated with this material, as VC-RGO contained the highest amount of surface carboxyl group (a strong metal-binding moiety). Notably, enhanced attachment (due to increased hydrophobic effect and cation-bridging) and particle aggregation appeared to work synergistically to increase RGO retention, as the attachment of large RGO aggregates significantly enhanced particle straining by narrowing the flow path. These observations reveal a largely overlooked link between the mobility of graphene-based materials and their key physicochemical properties.
Показать больше [+] Меньше [-]Size-resolved particle oxidative potential in the office, laboratory, and home: Evidence for the importance of water-soluble transition metals
2019
Guo, Hui-bin | Li, Mei | Lyu, Yan | Cheng, Tian-tao | Xv, Jun–jun | Li, Xiang
Particulate matter (PM) oxidative potential (OP) is an emerging health metric, but studies examining the OP of indoor PM are rare. This paper focuses on the relationships between respiratory exposure to OP and PM water-soluble composition in indoor environments. Size-resolved PM samples were collected between November 2015 and June 2016 from an office, home (including bedroom, living room, and storeroom), and laboratory using a MOUDI sampler. Particles from each source were segregated into eleven size bins, and the water-soluble metal content and dithiothreitol (DTT) loss rate were measured in each PM extract. The water-soluble OP (OPwₛ) of indoor PM was highest in the office and lowest in the home, varying by factors of up to 1.2; these variations were attributed to differences in occupation density, occupant activity, and ventilation. In addition, the particulate Cu, Mn, and Fe concentrations were closely correlated with OPwₛ in indoor particles; the transition metals may have acted as catalysts during oxidation processes, inducing ·OH formation through the concomitant consumption of DTT. The OPwₛ particle size distributions featured single modes with peaks between 0.18 and 3.2 μm across all indoor sites, reflecting the dominant contribution of PM₃.₂ to total PM levels and the enhanced oxidative activity of the PM₃.₂ compared to PM>₃.₂. Lung-deposition model calculations indicated that PM₃.₂ dominated the pulmonary deposition of the OPwₛ (>75%) due to both the high levels of metals content and the high deposition efficiency in the alveolar region. Therefore, because OPwₛ has been directly linked to various health effects, special attention should be given to PM₃.₂.
Показать больше [+] Меньше [-]Quarterly variability of floating plastic debris in the marine protected area of the Menorca Channel (Spain)
2019
Ruiz-Orejón, Luis F. | Mourre, Baptiste | Sardá, Rafael | Tintoré, Joaquín | Ramis-Pujol, Juan
Plastic pollution is widespread in all the oceans and seas, representing a significant threat to most of their ecosystems even in marine protected areas (MPAs). This study determines the floating plastic distribution in four different periods between 2014 and 2015 in the recently approved Menorca Channel MPA (Balearic Islands). Plastic debris were persistent during all sampling periods on the surface of the Channel, composed mainly by the microplastic sizes. Average particle abundances ranged from 138,293 items⋅km−2 in autumn to 347,793 items⋅km−2 during the spring, while weight densities varied from 458.15 g(DW)⋅km−2 in winter to 2016.67 g(DW)⋅km−2 in summer. Rigid plastics were the most frequent particles in all the periods analysed (from 89.40%-winter to 94.54%-spring). The high-resolution and particle distribution models corroborated that the oceanographic variability shapes different patterns of presence of plastics, and in particular the existence of areas with almost no plastics.
Показать больше [+] Меньше [-]Selenium induces changes of rhizosphere bacterial characteristics and enzyme activities affecting chromium/selenium uptake by pak choi (Brassica campestris L. ssp. Chinensis Makino) in chromium contaminated soil
2019
Cai, Miaomiao | Hu, Chengxiao | Wang, Xu | Zhao, Yuanyuan | Jia, Wei | Sun, Xuecheng | Elyamine, Ali Mohamed | Zhao, Xiaohu
Understanding the chemical response and characteristics of bacterial communities in soil is critical to evaluate the effects of selenium (Se) supplement on plant growth and chromium (Cr)/Se uptake in Cr contaminated soil. The rhizosphere soil characteristics of pak choi (Brassica campestris L. ssp. Chinensis Makino) were investigated in soil contaminated with different levels and forms of Cr when supplemented with Se. Although inhibition of plant growth caused by Cr stress was not completely alleviated by Se, Cr content in plant tissues decreased in Cr(VI)120Se5 treatment (Cr(VI): 120 mg kg−1 soil; Se: 5 mg kg−1 soil) and its bioavailability in soil decreased in Cr(III)200Se5 (Cr(III): 200 mg kg−1 soil; Se: 5 mg kg−1 soil) treatment. Moreover, antagonism of Cr and Se on soil enzyme activities and bacterial communities were revealed. Notably, results of Cr(VI) reduction and Se metabolism functional profiles confirmed that bacterial communities play a critical role in regulating Cr/Se bioavailability. Additionally, the increases of Se bioavailability in Cr contaminated soil were ascribed to oxidation of Cr(VI) and reduction of Se reductases proportions, as well as the enhancing of pH in soil. These findings reveal that Se has the potential capacity to sustain the stability of microdomain in Cr contaminated soil.
Показать больше [+] Меньше [-]Influence of titanium dioxide nanoparticles on the transport and deposition of microplastics in quartz sand
2019
Cai, Li | He, Lei | Peng, Shengnan | Li, Meng | Tong, Meiping
The influence of titanium dioxide nanoparticles (nTiO₂) on the transport and deposition of polystyrene microplastics (MPs) in saturated quartz sand was investigated in NaCl solutions with ionic strengths from 0.1 to 10 mM at two pH conditions (pH 5 and 7). Three different-sized polystyrene (PS) MPs (diameter of 0.2, 1, and 2 μm) were concerned in present study. We found that for all three different-sized MPs in NaCl solutions (0.1, 1 and 10 mM) at both pH 5 and 7, lower breakthrough curves and higher retained profiles of MPs with nTiO₂ copresent in suspensions relative to those without nTiO₂ were obtained, demonstrating that the copresence of nTiO₂ in MPs suspensions decreased MPs transport and increased their deposition in quartz sand under all examined conditions. The mechanisms contributing to the increased MPs deposition with nTiO₂ in suspensions at two pH conditions were different. The formation of MPs-nTiO₂ heteroaggregates and additional deposition sites provided by previously deposited nTiO₂ were found to drive to the increased MPs deposition with nTiO₂ in suspensions at pH 5, while the formation of MPs-nTiO₂ aggregates, additional deposition sites and increased surface roughness induced by the pre-deposited nTiO₂ on quartz sand surfaces were responsible for the enhanced MPs deposition at pH 7. The results give insights to predict the fate and transport of different-sized MPs in porous media in the copresence of engineered nanoparticles.
Показать больше [+] Меньше [-]Modeling study of ozone source apportionment over the Pearl River Delta in 2015
2019
Yang, Wenyi | Chen, Huansheng | Wang, Wending | Wu, Jianbin | Li, Jie | Wang, Zifa | Zheng, Junyu | Chen, Duohong
In recent years, the concentration of fine particulate matter has decreased gradually in the Pearl River Delta (PRD) region, but the ozone (O₃) concentration remains high and has become the primary air pollutant. In this study, using a three-dimensional numerical model [nested air quality prediction modeling system (NAQPMS)] coupled with an on-line source apportionment module, the contribution of different source regions and source categories to the O₃ concentration in the PRD region was quantified. A comparison with observation data confirmed that the NAQPMS adequately reproduced surface O₃ concentrations in different seasons. Compared with biogenic emissions, anthropogenic precursors play a dominant role in O₃ production. In Guangzhou city, among different source categories, mobile emission is the largest contributor (accounting for approximately 40%), followed by industry emissions (20%–24%). Regional control measures for solvent use and mobile emissions are effective for reducing O₃ concentration. In the PRD region, self-contribution is more significant in daytime (∼40%) than in nighttime (∼10%) on average. Among the source regions outside PRD, the northern part of Guangdong province, Jiangxi province, and Fujian province are important contributors. Within the PRD region, the self-contribution of each city increases by 12%–32% during O₃ episodes (>80 ppbv) compared with the annual mean contribution. The contribution of the entire PRD region and the entire Guangdong province is 46%–63% and 63%–74% in PRD cities during O₃ episodes. These results indicate that regional collaboration on emission control within PRD or Guangdong province is effective for reducing O₃ episodes in the PRD region. In addition, because long-range transport from regions outside Guangdong province played an important role in the O₃ concentration in the PRD region, long-term emission control measures throughout China in subsequent years should be propitious to further reduce the annual O₃ level and improve air quality in the PRD region.
Показать больше [+] Меньше [-]Aflatoxin B1 promotes autophagy associated with oxidative stress-related PI3K/AKT/mTOR signaling pathway in mice testis
2019
Huang, Wanyue | Cao, Zheng | Zhang, Jian | Ji, Qiang | Li, Yanfei
Aflatoxin B₁ (AFB₁) is a hazard environmental pollutants and the most toxic one of all the aflatoxins. AFB₁ can cause a serious impairment to testicular development and spermatogenesis, yet the underlying mechanisms remain inconclusive. Oxidative stress acts as a master mechanism of AFB₁ toxicity, and can promote autophagy. Abnormal autophagy resulted in testicular damage and spermatogenesis disorders. The objective of this study was to explore the effect of AFB₁ on autophagy in mice testis and its potential mechanisms. In this study, male mice were intragastrically administered with 0, 0.375, 0.75 or 1.5 mg/kg body weight AFB₁ for 30 days. We found that AFB₁ induced testicular damage, reduced serum testosterone level and impaired sperm quality accompanied with the elevation of oxidative stress and germ cell apoptosis. Interestingly, we observed increasing numbers of autophagosomes in AFB₁-exposed mice testis. Meanwhile, AFB₁ caused testis abnormal autophagy with the characterization of increased expressions of LC3, Beclin-1, Atg5 and p62. Furthermore, AFB₁ downregulated the expressions of PI3K, p-AKT and p-mTOR in mice testis. Taken together, our data indicated AFB₁ induced testicular damage and promoted autophagy, which were associated with oxidative stress-related PI3K/AKT/mTOR signaling pathway in mice testis.
Показать больше [+] Меньше [-]