Уточнить поиск
Результаты 1411-1420 из 6,548
Transfer of dechlorane plus between human breast milk and adipose tissue and comparison with legacy lipophilic compounds Полный текст
2020
Pan, Hai-Yan | Li, Ji-Fang-Tong | Li, Xing-Hong | Yang, You-Lin | Qin, Zhan-Fen | Li, Jin-Bo | Li, Yuan-Yuan
In this study, levels of dechlorane plus (DP) in breast milk and matched adipose tissue samples were measured from 54 women living in Wenling, China. Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) were measured simultaneously for comparison. The levels of ∑DPs/∑PBDEs varied from less than one to several dozens of ng g⁻¹ lipid weight (lw) in matrices and the levels of ∑PCBs varied between several to hundreds of ng g⁻¹ lw. In the same matrix, ∑DPs and ∑PCBs/∑PBDEs showed a significant relationship (p < 0.05), indicating that they shared common sources. Accordingly, there was a strong association of lipid-adjusted concentrations of individual compounds (BDE-209 excluded) between matrices (p < 0.001), suggesting that breast milk could be a proxy for adipose tissue in human bioburden monitoring of these compounds. The predicted lipid-adjusted milk/adipose ratios varied from 0.62 to 1.5 but showed significant differences (p<0.001) between compounds, suggesting a compound-specific transfer between milk lipids and adipose tissue lipids. Specifically, the milk/adipose ratios for syn-DP and anti-DP (−1.40 and 1.3, respectively) were significantly higher than those of CB congeners and hexa/hepta-BDE congeners (p < 0.05). In addition, unlike PCBs/PBDEs (excluding BDE-209), DP’s hydrophobicity might not be responsible for its preferable distribution in milk lipids. Instead, the interaction with nonlipid factors played a key role. The fraction of anti-DP between the two kinds of matrices was not significantly different, suggesting that the biochemical transfer processes may not be efficient enough to distinguish DP isomers. Nevertheless, the congener patterns of PCBs/PBDEs gave a clue about the compound-specific transfer between milk and adipose tissue. To our knowledge, this is the first to report the relationships of DP between adipose tissue and breast milk. These results could provide useful and in-depth information on biomonitoring of DP and facilitate the understanding of the accumulation and excretion potentials of DP and its distribution-related mechanism in humans.
Показать больше [+] Меньше [-]In-situ biodegradation of harmful pollutants in landfill by sludge modified biochar used as biocover Полный текст
2020
Qin, Linbo | Huang, Xinming | Xue, Qiang | Liu, Lei | Wan, Yong
MSW landfill releases a lot of harmful pollutants such as H₂S, NH₃, and VOCs. In this study, two laboratory-scale biocovers such as biochar (BC) derived from agricultural & forestry wastes (AFW) pyrolysis, and sludge modified the biochar (SBC) were designed and used to remove the harmful pollutants. In order to understand in-situ biodegradation mechanism of the harmful pollutants by the SBC, the removal performances of the harmful pollutants together with the bacterial community in the BC and SBC were investigated in simulated landfill systems for 60 days comparing with the contrast experiment of a landfill cover soil (LCS). Meanwhile, the adsorption capacities of representative harmful pollutants (hydrogen sulfide, toluene, acetone and chlorobenzene) in the LCS, BC, and SBC were also tested in a fixed bed reactor. The removal efficiencies of the harmful pollutants by the SBC ranged from 95.43% to 100.00%, which was much higher than that of the LCS. The adsorption capacities of the harmful pollutants in the SBC were 4 times higher than that of the LCS since the SBC exhibited higher BET surface and N-containing functional groups. Meanwhile, the biodegradation rates of the harmful pollutants in the SBC were also much higher than that of the LCS since the populations of the bacterial community in the SBC were more abundant due to its facilitating the growth and activity of microorganisms in the porous structure of the SBC. In addition, a synergistic combination of adsorption and biodegradation in the SBC that enhanced the reproduction rate of microorganisms by consuming the absorbed-pollutants as carbon sources, which also contributed to enhance the biodegradation rates of the harmful pollutants.
Показать больше [+] Меньше [-]Design of a Z-scheme g-C3N4/CQDs/CdIn2S4 composite for efficient visible-light-driven photocatalytic degradation of ibuprofen Полный текст
2020
Liang, Mingxing | Zhang, Zhaosheng | Long, Run | Wang, Ying | Yu, Yajing | Pei, Yuansheng
A novel Z-scheme photocatalyst consisting of acidified graphitic carbon nitrogen (ag-C₃N₄)/carbon quantum dots/CdIn₂S₄ (CN/CQDs/CIS) was successfully synthesized via a one-step hydrothermal method. The optimized CN-2/CQDs-3/CIS exhibited significantly improved photocatalytic performance in the degradation of ibuprofen under visible-light irradiation. Based on a series of characterizations, the ag-C₃N₄ and CQDs were distributed uniformly on the surface of the cubic spinel structure of CIS, with intimate contact among the materials. This intimate heterogeneous interface facilitated the migration of photogenerated carriers, further leading to enhanced photocatalytic performance. These results also indicated that the CQDs not only connect ag-C₃N₄ with CIS through covalent bonds but also enhance the visible-light adsorption. According to the analysis of the UV–vis diffuse reflectance spectra (DRS) and Mott-Schottky curves, the mechanism of the Z-scheme heterojunction is proposed. The CQDs serve as electron mediators and transfer the electrons in the conduction band (CB) of ag-C₃N₄ to recombine with the holes in the valence band (VB) of CIS in the Z-scheme, leading to the enhanced separation efficiency of the photogenerated electrons in the CB of ag-C₃N₄ and the holes in the VB of CIS. The pollutant IBU was degraded by h⁺, ·O₂⁻ and ·OH, as determined by electron paramagnetic resonance (EPR) analysis.
Показать больше [+] Меньше [-]DOM derivations determine the distribution and bioavailability of DOM-Se in selenate applied soil and mechanisms Полный текст
2020
Wang, Dan | Peng, Qin | Yang, Wen-Xiao | Dinh, Quang Toan | Tran, Thi Anh Thu | Zhao, Xing-Da | Wu, Jiang-Tong | Liu, Yong-Xian | Liang, Dong-Li
Straw amendment and plant root exudates modify the quality and quantities of soil dissolved organic matter (DOM) and then manipulate the fractions of soil selenium (Se) and its bioavailability. Two typical soils with distinct pH were selected to investigate the effect of different contributors on DOM-Se in soil. The mechanisms relying on the variation in DOM characteristics (quality, quantity and composition) were explored by UV–Vis, ATR-FTIR and 3D-EEM. Straw amendment significantly (p < 0.05) suppressed the selenate bioavailability. The reduction in wheat Se content was greater in krasnozems than in Lou soil, as more HA fraction appeared in krasnozems. The root exudates of wheat mainly elevated the low molecular hydrophilic compounds (Hy) in soil, which contributed to the SOL-Hy-Se fractions and thus grain Se in soils (p < 0.01). However, straw amendment promoted DOM transforming from small molecules (Hy and FA) to aromatic large molecules (HA), when accompanied with the reduction and retention of Se associated with these molecules. As a result, selenium bioavailability and toxicity reduced with DOM amendment and DOM-Se transformation.
Показать больше [+] Меньше [-]Effects of phosphorus availability and phosphorus utilization behavior of Microcystis aeruginosa on its adaptation capability to ultraviolet radiation Полный текст
2020
Ren, Lingxiao | Wang, Peifang | Wang, Chao | Paerl, Hans W. | Wang, Huiya
Phosphorus (P) plays a critical role in eutrophication and algal growth; therefore, improving our understanding of the impact of P is essential to control harmful algal blooms. In this study, Microcystis aeruginosa was treated with 5-h ambient irradiation in the medium with different dissolved inorganic P (DIP) concentrations, DIP-free, moderate-DIP, and high-DIP, to explore its growth and other physiological responses. Compared to photosynthetically active radiation (PAR), UV-A (320–400 nm) and UV-B (280–320 nm) radiation had inhibitive effects on the photosynthesis and growth of M. aeruginosa, while high P availability could alleviate or eliminate the negative effects of UV radiation. The photosynthetic parameters had a minimum reduction and quickly recovered after re-inoculation under high-DIP conditions. Confirmed by SEM, photosynthetic pigments, the generation of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and other methods, ambient UV radiation exerted oxidative stresses rather than direct lethal effects on M. aeruginosa. Photosynthetic parameters indicated that algal UV-adaptation processes could include decreasing photo-induced damages and increasing self-repair efficiency. The P acquired by M. aeruginosa cells can have two function, which included alleviating UV-induced negative effects and sustaining algal growth. Consequently, UV-adaptation processes of M. aeruginosa resulted in an elevated demand for DIP, which resulted to increased P uptake rates and cellular P quota under moderate and high-DIP conditions. Therefore, the production of carotenoid and phycocyanin, and SOD activity increased under UV stress, leading to a better adaptation capability of M. aeruginosa and decreased negative effects of UV radiation on its growth. Overall, our findings demonstrated the significant interactive effects of P enrichment and irradiation on typical cyanobacteria, and the strong adaptation capability of M. aeruginosa in the eutrophic UV-radiated waters.
Показать больше [+] Меньше [-]A new perspective of probing the level of pollution in the megacity Delhi affected by crop residue burning using the triple oxygen isotope technique in atmospheric CO2 Полный текст
2020
Laskar, Amzad H. | Maurya, Abhayanand S. | Singh, Vishvendra | Gurjar, Bhola R. | Liang, Mao-Chang
Air quality in the megacity Delhi is affected not only by local emissions but also by pollutants from crop residue burning in the surrounding areas of the city, particularly the rice straw burning in the post monsoon season. As a major burning product, gaseous CO₂, which is rather inert in the polluted atmosphere, provides an alternative solution to characterize the impact of biomass burning from a new perspective that other common tracers such as particulate matters are limited because of their physical and chemical reactiveness. Here, we report conventional ([CO₂], δ¹³C, and δ¹⁸O) and unconventional (Δ¹⁷O) isotope data for CO₂ collected at Connaught Place (CP), a core area in the megacity Delhi, and two surrounding remote regions during a field campaign in October 18–20, 2017. We also measured the isotopic ratios near a rice straw burning site in Taiwan to constrain their end member isotopic compositions. Rice straw burning produces CO₂ with δ¹³C, δ¹⁸O, and Δ¹⁷O values of −29.02 ± 0.65, 19.63 ± 1.16, and 0.05 ± 0.02‰, respectively. The first two isotopic tracers are less distinguishable from those emitted by fossil fuel combustion but the last one is significantly different. We then utilize these end member isotopic ratios, with emphasis on Δ¹⁷O for the reason given above, for partitioning sources that affect the CO₂ level in Delhi. Anthropogenic fraction of CO₂ at CP ranges from 4 to 40%. Further analysis done by employing a three-component (background, rice straw burning, and fuel combustion) mixing model with constraints from the Δ¹⁷O values yields that rice straw burning contributes as much as ∼70% of the total anthropogenic CO₂, which is more than double of the fossil fuel contribution (∼30%), during the study days.
Показать больше [+] Меньше [-]Transcriptional analyses of acute per os exposure and co-exposure of 4-vinylcyclohexene and methylmercury-contaminated diet in adults of Drosophila melanogaster Полный текст
2020
Piccoli, Bruna Candia | Segatto, Ana Lúcia Anversa | Loreto, Élgion L.S. | Moreira, José Cláudio Fonseca | Ardisson-Araújo, Daniel M.P. | Rocha, João B.T.
Continuous exposure to low levels of toxic substances can be associated with delayed physical disturbances, which can be preceded by changes in enzyme activities and gene expression. Thus, understanding changes in the transcriptional profile could help in recognition of early molecular events involved in the toxicity mechanism of toxicants. Vinylcyclohexene (VCH) and methylmercury (MeHg⁺) are xenobiotics, which do not present a completely elucidated mechanism of toxicity. Metabolites of both compounds have some overlapping chemical properties that involve moderate to high affinity for thiol and selenol groups. In this work, we characterized by deep-sequencing transcriptomic approach the effects of VCH and MeHg⁺ on the mRNA transcriptional profile of adults fruit flies (Drosophila melanogaster) after individual and concomitant exposure to VCH and MeHg⁺. The flies were separated into four groups: control, VCH, MeHg⁺, and VCH + MeHg⁺. After individual exposure, VCH deregulated 38 genes (of which the majority was up-regulated), whereas MeHg⁺ altered 26 genes (i.e., 14 down-regulated). VCH and MeHg⁺ co-exposure changed 72 genes with a high number of genes down-regulated. Together, the results suggest that although the compounds could have some similar protein targets (e.g., sulfhydryl-containing proteins), the transcriptional profile after individual exposures and co-exposure were completely different.
Показать больше [+] Меньше [-]Environmental forensics of complexly contaminated sites: A complimentary fingerprinting approach Полный текст
2020
Kruge, Michael A. | Lara-Gonzalo, Azucena | Gallego, José Luis R.
The environmental forensics approach is most often applied in petroleum and fuel spill incidents, for which sophisticated chemical fingerprinting procedures have evolved. In cases in which pollutant discharges occur in settings with prior contamination, more care must be taken in source discrimination, requiring further advances in methodology. Additional obstacles can arise if the spill is an atypical industrial discharge. This would necessitate painstaking characterization of unfamiliar substances lying outside of existing regulatory regimes and thus overlooked by mandated analytical protocols (i.e., contaminants of emerging concern). Towards these ends, this paper presents a systematic, multi-faceted GC-MS approach using the saturated, aromatic, and resin fractions of contaminated soil extracts, alongside soil thermal desorption and analytical pyrolysis of the soil and its asphaltene fraction. This complimentary “extract + thermal” approach is applied to a typical fuel oil spill, sediments of a severely-impacted urban river, and brownfield soils from coke, petrochemical, and Hg-As pyrometallurgical plants. The insights thus attained can serve to better inform brownfield remediation planning in the public interest.
Показать больше [+] Меньше [-]Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge Полный текст
2020
Edo, Carlos | González-Pleiter, Miguel | Leganés, Francisco | Fernández-Piñas, Francisca | Rossal S., J. Roberto (Julio Roberto Rossal Salazar)
This work studied the occurrence of microplastics in primary and secondary effluents and mixed sludge of a WWTP as well as in processed heat-dried sludge marketed as soil amendment. Sampled microparticles were divided into fragments and fibres, the latter defined as those with cylindrical shape and length to diameter ratio >3. We showed the presence of 12 different anthropogenic polymers or groups of polymers with a predominance of polyethylene, polypropylene, polyester and acrylic fibres together with an important amount of manufactured natural fibres. The smaller sampled fraction, in the 25–104 μm range, was the largest in both primary and secondary effluents. Fibres displayed lower sizes than fragments and represented less than one third of the anthropogenic particles sampled in effluents but up to 84% of heat-dried sludge. The plant showed a high efficiency (>90%) in removing microplastics from wastewater. However, the amount of anthropogenic plastics debris in the 25 μm - 50 mm range still released with the effluent amounted to 12.8 ± 6.3 particles/L, representing 300 million plastic debris per day and an approximate load of microplastics of 350 particles/m³ in the receiving Henares River. WWTP mixed sludge contained 183 ± 84 particles/g while heat-dried sludge bore 165 ± 37 particles/g. The sludge of the WWTP sampled in this work, would disseminate 8 × 10¹¹ plastic particles per year if improperly managed. The agricultural use of sludge as soil amendment in the area of Madrid could spread up to 10¹³ microplastic particles in agricultural soils per year.
Показать больше [+] Меньше [-]Measurement of N2O emissions over the whole year is necessary for estimating reliable emission factors Полный текст
2020
Shang, Ziyin | Abdalla, Mohamed | Kuhnert, Matthias | Albanito, Fabrizio | Zhou, Feng | Xia, Longlong | Smith, Pete
Nitrous oxide emission factors (N₂O-EF, percentage of N₂O–N emissions arising from applied fertilizer N) for cropland emission inventories can vary with agricultural management, soil properties and climate conditions. Establishing a regionally-specific EF usually requires the measurement of a whole year of N₂O emissions, whereas most studies measure N₂O emissions only during the crop growing season, neglecting emissions during non-growing periods. However, the difference in N₂O-EF (ΔEF) estimated using measurements over a whole year (EFwy) and those based on measurement only during the crop-growing season (EFgₛ) has received little attention. Here, we selected 21 studies including both the whole-year and growing-season N₂O emissions under control and fertilizer treatments, to obtain 123 ΔEFs from various agroecosystems globally. Using these data, we conducted a meta-analysis of the ΔEFs by bootstrapping resampling to assess the magnitude of differences in response to management-related and environmental factors. The results revealed that, as expected, the EFwy was significantly greater than the EFgₛ for most crop types. Vegetables showed the largest ΔEF (0.19%) among all crops (0.07%), followed by paddy rice (0.11%). A higher ΔEF was also identified in areas with rainfall ≥600 mm yr⁻¹, soil with organic carbon ≥1.3% and acidic soils. Moreover, fertilizer type, residue management, irrigation regime and duration of the non-growing season were other crucial factors controlling the magnitude of the ΔEFs. We also found that neglecting emissions from the non-growing season may underestimate the N₂O-EF by 30% for paddy fields, almost three times that for non-vegetable upland crops. This study highlights the importance of the inclusion of the non-growing season in the measurements of N₂O fluxes, the compilation of national inventories and the design of mitigation strategies.
Показать больше [+] Меньше [-]