Уточнить поиск
Результаты 1451-1460 из 6,558
Occurrence and characteristics of microplastics in the Haihe River: An investigation of a seagoing river flowing through a megacity in northern China Полный текст
2020
Liu, Yang | Zhang, JiaoDi | Cai, ChuanYang | He, Yong | Chen, LiYuan | Xiong, Xiong | Huang, HuiJing | Tao, Shu | Liu, Wenxin
Freshwater systems serve as important sources and transportation routes for marine microplastic pollution, and inadequate attention has been paid to this situation. Data on microplastic pollution of typical seagoing rivers in northern China are lacking. In the current study, we investigated the distribution and characteristics of microplastics in the main stream of the Haihe River, which flows through a metropolis with a high population density and level of industrialization and then flows into the Bohai Sea. The microplastic samples were collected by manta trawls with pore sizes of 333 μm, and the microplastic concentrations ranged from 0.69 to 74.95 items/m³. Fibers dominated in the surface water of the Haihe River; their shapes that were categorized as fibers, film, foam, fragments, and spheres, and contributed 17.4–86.7% of the total microplastics studied. The size distribution of the microplastics was concentrated in a range of 100–1000 μm, with 54.7% of the total sizes corresponding to the 333-μm trawl. Micro-Fourier transform infrared (μ-FT-IR) spectra showed that the main components were polyethylene, poly(ethylene-propylene) copolymer, and polypropylene. Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) measurements revealed scratches, micropores, and cracks on the surfaces of the microplastics due to mechanical friction, chemical oxidation and degradation processes. The results of this study confirmed the high abundance and high diversity of microplastics in an urban river and indicated appreciable impacts from point-source inputs on the microplastic pollution, such as effluents from wastewater treatment plants (WWTPs).
Показать больше [+] Меньше [-]Quantifying the contributions of local emissions and regional transport to elemental carbon in Thailand Полный текст
2020
Xing, Li | Li, Guohui | Pongpiachan, Siwatt | Wang, Qiyuan | Han, Yongming | Cao, Junji | Tipmanee, Danai | Palakun, Jittree | Aukkaravittayapun, Suparerk | Surapipith, Vanisa | Poshyachinda, Saran
We used the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem) to simulate elemental carbon (EC) concentrations in Thailand in 2017. The goals were to quantify the respective contributions of local emissions and regional transport outside Thailand to EC pollution in Thailand, and to identify the most effective emission control strategy for decreasing EC pollution. The simulated EC concentrations in Chiang Mai, Bangkok, and Phuket were comparable with the observation data. The correlation coefficient between the simulated and observed EC concentrations was 0.84, providing a good basis for evaluating EC sources in Thailand. The simulated mean EC concentration over the whole country was the highest (1.38 μg m⁻³) in spring, and the lowest (0.51 μg m⁻³) in summer. We conducted several sensitivity simulations to evaluate EC sources. Local emissions (including anthropogenic and biomass burning emissions) and regional transport outside Thailand contributed 81.2% and 18.8% to the annual mean EC concentrations, respectively, indicating that local sources played the dominant role for EC pollution in Thailand. Among the local sources, anthropogenic emissions (including the industry, power plant, residential, and transportation sectors) and biomass burning contributed 75.1% and 6.1% to the annual mean EC concentrations, respectively. As the anthropogenic emissions dominated the EC pollution, we performed four sensitivity simulations by reducing 30% of the emissions from each of the industry, power plant, residential, and transportation sectors in Thailand. The results indicated that controlling transportation emissions in Thailand was the most effective way in reducing the EC pollution. The 30% reduction of transportation emissions decreased the annual mean EC concentrations by 12.1%. In contrast, 30% reductions of the residential, industry, and power plant emissions caused 8.4%, 6.4%, and 4.0% decreases in the annual mean EC concentrations, respectively. The model results could potentially provide useful information for air pollution control strategies in Thailand.
Показать больше [+] Меньше [-]Impact of polystyrene nanoparticles on marine diatom Skeletonema marinoi chain assemblages and consequences on their ecological role in marine ecosystems Полный текст
2020
Bellingeri, Arianna | Casabianca, Silvia | Capellacci, Samuela | Faleri, Claudia | Paccagnini, Eugenio | Lupetti, Pietro | Koelmans, Albert A. | Penna, Antonella | Corsi, Ilaria
Impact of polystyrene nanoparticles on marine diatom Skeletonema marinoi chain assemblages and consequences on their ecological role in marine ecosystems Полный текст
2020
Bellingeri, Arianna | Casabianca, Silvia | Capellacci, Samuela | Faleri, Claudia | Paccagnini, Eugenio | Lupetti, Pietro | Koelmans, Albert A. | Penna, Antonella | Corsi, Ilaria
Marine diatoms have been identified among the most abundant taxa of microorganisms associated with plastic waste collected at sea. However, the impact of nano-sized plastic fragments (nanoplastics) at single cell and population level is almost unknown. We exposed the marine diatom Skeletonema marinoi to model polystyrene nanoparticles with carboxylic acid groups (PS–COOH NPs, 90 nm) for 15 days (1, 10, 50 μg/mL). Growth, reactive oxygen species (ROS) production, and nano-bio-interactions were investigated. No effect on diatom growth was observed, however Dynamic light scattering (DLS) demonstrated the formation of large PS aggregates which were localized at the diatoms’ fultoportula process (FPP), as shown by TEM images. Increase production of ROS and reduction in chain length were also observed upon PS NPs exposure (p < 0.005). The observed PS-diatom interaction could have serious consequences on diatoms ecological role on the biogeochemical cycle of carbon, by impairing the formation of fast-sinking aggregates responsible for atmospheric carbon fixation and sequestration in the ocean sea floor.S. marinoi exposure to PS NPs caused an increase of intracellular and extracellular oxidative stress, the reduction of diatom’s chain length and the adhesion of PS NPs onto the algal surface.
Показать больше [+] Меньше [-]Impact of polystyrene nanoparticles on marine diatom Skeletonema marinoi chain assemblages and consequences on their ecological role in marine ecosystems Полный текст
2020
Bellingeri, Arianna | Casabianca, Silvia | Capellacci, Samuela | Faleri, C. | Paccagnini, Eugenio | Lupetti, Pietro | Koelmans, A.A. | Penna, Antonella | Corsi, Ilaria
Marine diatoms have been identified among the most abundant taxa of microorganisms associated with plastic waste collected at sea. However, the impact of nano-sized plastic fragments (nanoplastics) at single cell and population level is almost unknown. We exposed the marine diatom Skeletonema marinoi to model polystyrene nanoparticles with carboxylic acid groups (PS–COOH NPs, 90 nm) for 15 days (1, 10, 50 μg/mL). Growth, reactive oxygen species (ROS) production, and nano-bio-interactions were investigated. No effect on diatom growth was observed, however Dynamic light scattering (DLS) demonstrated the formation of large PS aggregates which were localized at the diatoms’ fultoportula process (FPP), as shown by TEM images. Increase production of ROS and reduction in chain length were also observed upon PS NPs exposure (p < 0.005). The observed PS-diatom interaction could have serious consequences on diatoms ecological role on the biogeochemical cycle of carbon, by impairing the formation of fast-sinking aggregates responsible for atmospheric carbon fixation and sequestration in the ocean sea floor. S. marinoi exposure to PS NPs caused an increase of intracellular and extracellular oxidative stress, the reduction of diatom's chain length and the adhesion of PS NPs onto the algal surface.
Показать больше [+] Меньше [-]Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes Полный текст
2020
Yan, Xinyu | Yang, Xinyao | Tang, Zhang | Fu, Jingjing | Chen, Fangmin | Zhao, Ying | Ruan, Lili | Yang, Yuesuo
Current understanding on the fate and behavior of microplastics (MPs) in complex soil media remains inadequate. We characterized the aging and hetero-aggregation of a MP sampled in farmland soil, and explored its vertical downward transport in natural loamy sand. The MP was identified with FTIR spectrum as polypropylene, a plastic lighter than water. FTIR spectrum combined with SEM imaging confirmed the MP was highly aged, generating colloidal plastic fibers and carbonyl groups. SEM imaging coupled with EDX analysis suggested hetero-aggregation of the MP with soil minerals. Soil leaching tests performed with the clean MP (without soil minerals) (CMP), the raw MP (RMP) (with soil minerals), and the RMP with humic acid (HA) (RMP + HA) demonstrated that the mobility was insignificant for the CMP, moderate for the RMP and highest for the RMP + HA, resulting in a maximal downward traveling distance of 0 cm, 3–4 cm, and 9–10 cm, respectively. Correlation between the maximal traveling distance and zeta potential of the CMP, RMP, and RMP + HA confirmed surface charge as a dominant control on the MP mobility; while the increasing density of the MP, due to hetero-aggregation with soil minerals, was identified as a driving mechanism for its downward transport, despite its intrinsic density lower than water. Occurrence of only the lower-sized rod-shaped plastic fibers at the maximal traveling distance suggested the natural aging, a process leading to plastic vibration and fragmentation, was conducive to plastic translocation. The three explored classes of antibiotic resistance genes (ARGs) (tetracycline, beta-lactam and sulfonamide) were all detected in the plastic surface, suggesting the MP may function as a potential pathway for the dissemination of ARGs to the deeper soil layer. These findings are important to understand the concentration distribution of both the MPs and ARGs in agriculture impacted soils, a natural reservoir of both emerging contaminants.
Показать больше [+] Меньше [-]Bamboo-biochar and hydrothermally treated-coal mediated geochemical speciation, transformation and uptake of Cd, Cr, and Pb in a polymetal(iod)s-contaminated mine soil Полный текст
2020
Mujtaba Munir, Mehr Ahmed | Liu, Guijian | Yousaf, Balal | Ali, Muhammad Ubaid | Cheema, Ayesha Imtiyaz | Rashid, Muhammad Saqib | Rehman, Abdul
In this study, polymetal(iod)s-contaminated mining soil from the Huainan coalfield, Anhui, China, was used to investigate the synergistic effects of biochar (BC), raw coal (RC), and hydrothermally treated coal (HTC) on the immobilization, speciation, transformation, and accumulation of Cd, Cr, and Pb in a soil–plant system via geochemical speciation and advanced spectroscopic approaches. The results revealed that the BC-2% and BC–HTC amendments were more effective than the individual RC, and/or HTC amendments to reduce ethylene-diamine-tetraacetic acid (EDTA)-extractable Cd, Cr, and Pb concentrations by elevating soil pH and soil organic carbon content. Soil pH increased by 1.5 and 2.5 units after BC-2% and BC–HTC amendments, respectively, which reduced EDTA-extractable Cd, Cr, and Pb to more stabilized forms. Metal speciation and X-ray photoelectron spectroscopy analyses suggested that the BC–HTC amendment stimulated the transformation of reactive Cd, Cr, and Pb (exchangeable and carbonate-bound) states to less reachable (oxide and residual) states to decrease the toxicity of these heavy metals. Fourier transform infrared spectroscopy and X-ray diffraction analyses suggested that reduction and adsorption by soil colloids may be involved in the mechanism of Cd(II), Cr(VI), and Pb(II) immobilization via hydroxyl, carbonyl, carboxyl, and amide groups in the BC and HTC. Additionally, the BC-2% and BC–HTC amendments reduced Cd and Pb accumulation in maize shoots, which could mainly be ascribed to the reduction of EDTA-extractable heavy metals in the soil and more functional groups in the roots, thus inhibiting metal ion translocation by providing the electrons necessary for immobilization, compared to those in roots grown in the unamended soil. Therefore, the combined application of BC and HTC was more effective than the individual application of these amendments to minimize the leaching, availability, and exchangeable states of Cd, Cr, and Pb in polymetal(iod)s-contaminated mining soil and accumulation in maize.
Показать больше [+] Меньше [-]Removal of Cadmium (II) using water hyacinth (Eichhornia crassipes) biochar alginate beads in aqueous solutions Полный текст
2020
Liu, Cenwei | Ye, Jing | Lin, Yi | Wu, Jian | Price, G.W. | Burton, D. | Wang, Yixiang
Biochar produced from water hyacinths (Eichhornia crassipes) has been demonstrated to be an effective adsorbent for the removal of certain heavy metals and as a means of control for this highly invasive species. This study involved examined the Cd²⁺ sorption dynamics of an alginate encapsulated water hyacinth biochar (BAC) generated at different temperatures and modified using ferric/ferrous sulfate (MBAC). The maximum Cd²⁺ sorption occurred at a pH of 6 and at a solution temperature of 37 °C. Sorption equilibria for the biochar-alginate capsule (BAC) and modified biochar-alginate capsule (MBAC) treatments fit both the Langmuir (R² = 0.876 to 0.99) and Freundlich (R² = 0.849 to 0.971) equations. Langmuir isotherms had a better fit than the Freundlich isotherms, with maximum sorption capacities ranging from 24.2 to 45.8 mg Cd²⁺ g⁻¹. Larger KL values in Freundlich modeling suggest strong bonding of the BAC and MBAC sorbents to Cd²⁺, with values of KL in the MBAC treatments ranging between 31 and 178% greater than the BAC treatments. Cd²⁺ sorption followed pseudo first-order kinetics (R² = 0.926 to 0.991) with greater efficiency of removal using treatments with biochar generated at temperatures >500 °C. Results from this study highlight the potential for biochar-alginate capsules derived from water hyacinth to be effective for the removal of Cd²⁺ from wastewaters.
Показать больше [+] Меньше [-]Determination of dextromethorphan and dextrorphan solar photo-transformation products by LC/Q-TOF-MS: Laboratory scale experiments and real water samples analysis Полный текст
2020
Campos-Mañas, Marina Celia | Cuevas, Sara Miralles | Ferrer, Imma | Thurman, Earl Michael | Sánchez-Pérez, José Antonio | Agüera, Ana
This work discusses the identification of the transformation products (TPs) generated during the photolytic degradation of dextromethorphan (DXM) and its metabolite dextrorphan (DXO), under simulated solar radiation in aqueous solutions (Milli-Q water and river water) in order to determinate its behavior into the aquatic environment. Tentative identification of the TPs was performed by liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/QTOF-MS), following a suspect screening approach. The use of high resolution-mass spectrometry (HRMS) allowed the tentative identification of DXM and DXO photoproducts based on the structure proposed by an in silico software, the accurate mass measurement, the MS/MS fragmentation pattern and the molecular formula finding. A total of 19 TPs were found to match some of the accurate masses included in a suspect list, and they were all tentatively identified by their characteristic MS-MS fragments. Most of the TPs identified showed a minor modified molecular structure like the introduction of hydroxyl groups, or demethylation. The time-evolution of precursors and TPs were monitored throughout the experiments, and degradation kinetics were presented for each analyte. Finally, the occurrence of DXM, DXO, and their tentatively proposed photodegradation TPs was evaluated in both surface and wastewater. In all real matrices, the results showed that the highest concentration was detected for DXO, followed by TP-244 (N-desmethyldextrorphan) and DXM.
Показать больше [+] Меньше [-]Recent advances in the removal of persistent organic pollutants (POPs) using multifunctional materials:a review Полный текст
2020
Sun, Bohua | Li, Qianqian | Zheng, Minghui | Su, Guijin | Lin, Shijing | Wu, Mingge | Li, Chuanqi | Wang, Qingliang | Tao, Yuming | Dai, Lingwen | Qin, Yi | Meng, Bowen
Persistent organic pollutants (POPs) have gained heightened attentions in recent years owing to their persistent property and hazard influence on wild life and human beings. Removal of POPs using varieties of multifunctional materials have shown a promising prospect compared with conventional treatments. Herein, three main categories, including thermal degradation, electrochemical remediation, as well as photocatalytic degradation with the use of diverse catalytic materials, especially the recently developed prominent ones were comprehensively reviewed. Kinetic analysis and underlying mechanism for various POPs degradation processes were addressed in detail. The review also systematically documented how catalytic performance was dramatically affected by the nature of the material itself, the structure of target pollutants, reaction conditions and treatment techniques. Moreover, the future challenges and prospects of POPs degradation by means of multiple multifunctional materials were outlined accordingly. Knowing this is of immense significance to enhance our understanding of POPs remediation procedures and promote the development of novel multifunctional materials.
Показать больше [+] Меньше [-]Reproductive dysfunction linked to alteration of endocrine activities in zebrafish exposed to mono-(2-ethylhexyl) phthalate (MEHP) Полный текст
2020
Park, Chang-Beom | Kim, Ko-ŭn | Kim, Yŏng-jun | On, Jiwon | Pak, Ch'ang-gyun | Kwon, Young-Sang | Pyo, Heesoo | Yeom, Dong-Huk | Cho, Sung Hee
This study aimed to investigate the effect of mono-(2-ethylhexyl) phthalate (MEHP), one of the major phthalate metabolites that are widespread in aquatic environments, on reproductive dysfunction, particularly on endocrine activity in adult male and female zebrafish. For 21 days, the zebrafish were exposed to test concentrations of MEHP (0, 2, 10, and 50 μg/mL) that were determined based on the effective concentrations (ECx) for zebrafish embryos. Exposure to 50 μg/mL MEHP in female zebrafish significantly decreased the number of ovulated eggs as well as the hepatic VTG mRNA abundance when those of the control group. Meanwhile, in female zebrafish, the biosynthetic concentrations of 17β-estradiol (E2) and the metabolic ratio of androgen to estrogen were remarkably increased in all MEHP exposed group compared with those in the control group, along with the elevated levels of cortisol. However, no significant difference was observed between these parameters in male zebrafishes. Therefore, exposure to MEHP causes reproductive dysfunction in female zebrafishes and this phenomenon can be attributed to the alteration in endocrine activities. Moreover, the reproductive dysfunction in MEHP-exposed female zebrafishes may be closely associated with stress responses, such as elevated cortisol levels. To further understand the effect of MEHP on the reproductive activities of fish, follow-up studies are required to determine the interactions between endocrine activities and stress responses. Overall, this study provides a response biomarker for assessing reproductive toxicity of endocrine disruptors that can serve as a methodological approach for an alternative to chronic toxicity testing.
Показать больше [+] Меньше [-]Assessment of polycyclic aromatic hydrocarbon contamination in the Sundarbans, the world’s largest tidal mangrove forest and indigenous microbial mixed biofilm-based removal of the contaminants Полный текст
2020
Balu, Saranya | Bhunia, Shantanu | Gachhui, Ratan | Mukherjee, Joydeep
The distribution of polycyclic aromatic hydrocarbons (PAHs) in the surface water and sediments in five regions of the Indian Sundarbans was assessed. The capability of microbial biofilm communities to sequester PAHs in a biofilm-promoting vessel was evaluated. The total PAH concentration of water and sediments ranged from undetectable to 125 ng ml⁻¹ and 4880 to 2 × 10⁴ ng g⁻¹ dry weight respectively. The total PAHs concentration of sediments exceeded the Effects Range–Low value and the recommended Effects Range-Median values, implying the PAHs might adversely affect the biota of the Sundarbans. Pyrogenic and petrogenic sources of PAH contamination were identified in most of the sampling sites. Indigenous biofilms were cultivated in a patented biofilm-promoting culture vessel containing liquid media spiked with 16 priority PAHs. Biofilm-mediated 97–100% removal efficiency of 16 PAHs was attained in all media. There was no significant difference between the mean residual PAH from the liquid media collected from hydrophobic and hydrophilic flasks. Residual amounts of acenaphthene (Ace), anthracene (Ant), benzo(b)fluoranthene [B(b)F], benzo(a)pyrene [B(a)P] and benzo(g,h,i)perylene [B(g,h,i)P] showed differences when cultivated in hydrophobic and hydrophilic flasks. The mean residual amounts of total PAHs extracted from biofilm biomasses were variable. A biofilm obtained from a specific sampling site cultured in the hydrophobic flask showed higher PAH sequestration when compared to the removal attained in the hydrophilic flask. Relative abundances of different microbial communities in PAH-sequestering biofilms revealed bacterial phyla including Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Chloroflexi and Planctomycetes as well as members of Ascomycota phylum of fungi. The dominance of Candida tropicalis, Clostridium butyricum, Sphingobacterium multivorum and Paecilomyces fulvus were established.
Показать больше [+] Меньше [-]