Уточнить поиск
Результаты 1581-1590 из 7,995
A societal transition of MSW management in Xiamen (China) toward a circular economy through integrated waste recycling and technological digitization Полный текст
2021
Kurniawan, Tonni Agustiono | Lo, Waihung | Singh, Deepak | Othman, Mohd Hafiz Dzarfan | Ram Avtar, | Hwang, Goh Hui | Albadarin, Ahmad B. | Kern, Axel Olaf | Shirazian, Saeed
Recently Xiamen (China) has encountered various challenges of municipal solid waste management (MSWM) such as lack of a complete garbage sorting and recycling system, the absence of waste segregation between organic and dry waste at source, and a shortage of complete and clear information about the MSW generated. This article critically analyzes the existing bottlenecks in its waste management system and discusses the way forward for the city to enhance its MSWM by drawing lessons from Hong Kong’s effectiveness in dealing with the same problems over the past decades. Solutions to the MSWM problem are not only limited to technological options, but also integrate environmental, legal, and institutional perspectives. The solutions include (1) enhancing source separation and improving recycling system; (2) improving the legislation system of the MSWM; (3) improvement of terminal disposal facilities in the city; (4) incorporating digitization into MSWM; and (5) establishing standards and definitions for recycled products and/or recyclable materials. We also evaluate and compare different aspects of MSWM in Xiamen and Hong Kong SAR (special administrative region) under the framework of ‘One Country, Two Systems’ concerning environmental policies, generation, composition, characteristics, treatment, and disposal of their MSW. The nexus of society, economics of the MSW, and the environment in the sustainability sphere are established by promoting local recycling industries and the standardization of recycled products and/or recyclable materials. The roles of digitization technologies in the 4ᵗʰ Industrial Revolution for waste reduction in the framework of circular economy (CE) are also elaborated. This technological solution may improve the city’s MSWM in terms of public participation in MSW separation through reduction, recycle, reuse, recovery, and repair (5Rs) schemes. To meet top-down policy goals such as a 35% recycling rate for the generated waste by 2030, incorporating digitization into the MSWM provides the city with technology-driven waste solutions.
Показать больше [+] Меньше [-]Iron modification to silicon-rich biochar and alternative water management to decrease arsenic accumulation in rice (Oryza sativa L.) Полный текст
2021
Kumarathilaka, Prasanna | Bundschuh, Jochen | Seneweera, Saman | Marchuk, Alla | Ok, Yong Sik
Production of rice grains at non-toxic levels of arsenic (As) to meet the demands of an ever-increasing population is a global challenge. There is currently a lack of investigation into integrated approaches for decreasing As levels in rice agro-ecosystems. By examining the integrated iron-modified rice hull biochar (Fe-RBC) and water management approaches on As dynamics in the paddy agro-ecosystem, this study aims to reduce As accumulation in rice grains. The rice cultivar, Ishikari, was grown and irrigated with As-containing water (1 mg L⁻¹ of As(V)), under the following treatments: (1) Fe-RBC-flooded water management, (2) Fe-RBC-intermittent water management, (3) conventional flooded water management, and (4) intermittent water management. Compared to the conventional flooded water management, grain weight per pot and Fe and Si concentrations in the paddy pore water under Fe-RBC-intermittent and Fe-RBC-flooded treatments increased by 24%–39%, 100%–142%, and 93%–184%, respectively. The supplementation of Fe-RBC decreased the As/Fe ratio and the abundance of Fe(III) reducing bacteria (i.e. Bacillus, Clostridium, Geobacter, and Anaeromyxobacter) by 57%–88% and 24%–64%, respectively, in Fe-RBC-flooded and Fe-RBC-intermittent treatments compared to the conventional flooded treatment. Most importantly, Fe-RBC-intermittent treatment significantly (p ≤ 0.05) decreased As accumulation in rice roots, shoots, husks, and unpolished rice grains by 62%, 37%, 79%, and 59%, respectively, compared to the conventional flooded treatment. Overall, integrated Fe-RBC-intermittent treatment could be proposed for As endemic areas to produce rice grains with safer As levels, while sustaining rice yields to meet the demands of growing populations.
Показать больше [+] Меньше [-]Exogenous application of Mn significantly increased Cd accumulation in the Cd/Zn hyperaccumulator Sedum alfredii Полный текст
2021
Ge, Jun | Tian, Shengke | Yu, Haiyue | Zhao, Jianqi | Chen, Junwen | Pan, Lijia | Xie, Ruohan | Lu, Lingli
Sedum alfredii is a Cd/Zn hyperaccumulator native to China, which was collected from a mined area where Mn content in soil was extremely high, together with Zn and Cd content. We investigated the tolerance and accumulation ability of Mn and its possible association with Cd hyperaccumulation in this plant species by using MP-AES, SR-μ-XRF, and RT-PCR. The results showed that the hyperaccumulating ecotype (HE) S. alfredii exhibited high tolerance to Mn and accumulating around 10,000 and 12,000 mg kg⁻¹ Mn in roots and shoots, respectively, without exhibiting toxicity under 5000 mg kg⁻¹ Mn treatment for 4 weeks. Exposure to Cd significantly reduced plant uptake of Mn. In contrast, exogenous Mn application significantly improved root uptake and root-to-shoot translocation of Cd, resulting in the increased Cd accumulation in the shoots of HE S. alfredii. SR-μ-XRF analysis demonstrated that high Mn (20 μM) exposure resulted in higher intensities of Cd localized in both stem vascular bundles and cortex, as well as leaf mesophyll cells, than in those treated with low Mn levels (0.2 μM or 2.0 μM). RT-PCR analysis of several genes possibly involved in Mn/Cd transportation showed that expression of SaNramp3 in roots was significantly reduced under high Mn exposure. These results suggested a significant interaction between Cd and Mn in the HE S. alfredii plants, possibly through their competition for transporters and theoretically provided a strategy to improve the efficiency of Cd extraction from polluted soils by this plant species, after using appropriate nutrient management of Mn.
Показать больше [+] Меньше [-]The benefits of biochar: Enhanced cadmium remediation, inhibited precursor production of nitrous oxide and a short-term disturbance on rhizosphere microbial community Полный текст
2021
Hou, Lijun | Zhang, Liping | Chen, Xiaotian | Li, Xuewen | ZengqiangZhang, | Lin, Yan Bing
Biochar has the potential to remediate heavy metals in agricultural soil and mitigate nitrous oxide (N₂O) emissions; however, the effects of biochar on heavy metal remediation, the soil microbial community and N₂O emissions are not completely understood. In this study, we conducted a pot experiment in which Glycine max L. (soybean) was cultivated in two cadmium (Cd)-contaminated soils (low, 3.14 mg kg⁻¹; high, 10.80 mg kg⁻¹) to investigate the effects of biochar on the bioremediation of Cd, N₂O emissions and the rhizosphere microbial community structure. The bioaccumulation of Cd in the plant shoots and roots increased with all biochar addition rates (0%, 1%, 5% and 10%); unexpectedly, the translocation capacity of Cd to the edible parts of the plant significantly decreased to 0.58 mg kg⁻¹, which was close to the edible threshold (0.4 mg kg⁻¹). The abundance and activities of functional marker genes of microbial nitrification (amoA) and denitrification (nirK, nirS and nosZ) were quantified with quantitative PCR, and we found that biochar addition reduced the precursor production of rhizoshpere N₂O by inhibiting the transcription of the nirK gene. In addition, the nitrogenase activity during anthesis (S) was significantly (P < 0.05) increased with 1% (v/v) biochar addition. Noticeably, biochar addition only changed the microbial community structure in the very first stage before eventually stabilize. This study highlighted that biochar has the potential ability to maintain the quality of agricultural crops, remediate Cd-contaminated soils and may help reduce N₂O emissions without disturbing the microbial community.
Показать больше [+] Меньше [-]Characteristics of biostability of drinking water in aged pipes after water source switching: ATP evaluation, biofilms niches and microbial community transition Полный текст
2021
Pan, Renjie | Zhang, Kejia | Cen, Cheng | Zhou, Xinyan | Xu, Jia | Wu, Jiajia | Wu, Xiaogang
Delivering quality-changed water often contributes to the biological instability of drinking water distribution systems (DWDS). However, the potential effects of quality-changed water on the biostability within DWDS are not well understood, especially after water switching to quality-improved water. The objective of this study was to investigate the effects of quality-improved water on DWDS, focusing on the stability of biofilm. The practical aged-pipe was assembled into pipe reactors to simulate the effect of switching to quality-improve water. The adenosine triphosphate (ATP) concentration of bulk water in the pipe reactors increased from ∼1.2 ng/L to almost above 5 ng/L when fed water switching to TP 2. Biomass quantified by measuring ATP concentration confirmed that the risk of biofilm release through aged cast-iron (CI) pipe surfaces after water source switching. The changes in water characteristics due to quality-improved water source could cause bacteria release in DWDS at the initial period (at the first 7 days). However, the DWDS can establish the new stable phase after 42 days. Over time, biomass in the bulk water of the distribution system decreased significantly (The ATP concentration in the bulk maintains around 3 ng/L) after 42 days, indicating the improvement of water quality. The biofilm was dominated by bacteria related to iron-cycling process, and at the genus level, Desulfovibrio had the highest relative abundance, however, it decreased significantly (from 48% to 9.3%) after water source switching. And there was a slightly increase in the fraction of iron-oxidizing bacteria (IOB) and siderophore-producing bacteria (SPB), but a relatively higher increase in nitrate-reducing bacteria (NRB), nitrobacteria (NOB), and iron-reducing bacteria (IRB) was observed. Taken together, these results and the corrosion morphology, indicate that pipe biofilm and corrosion were chemically and microbially stable after re-stability under water source switching. In addition, the bulk water environment showed a marked decrease in selected bacteria at genus level, including pathogenic species, indicating the improvement of quality in drinking water.
Показать больше [+] Меньше [-]Reduction of nitrate using biochar synthesized by Co-Pyrolyzing sawdust and iron oxide Полный текст
2021
Han, Eun-Yeong | Kim, Bo-Kyong | Kim, Hye-Bin | Kim, Jong-Gook | Lee, Jae-Young | Baek, Kitae
Nitrate is the most common contaminant in groundwater in Korea, as well as across the world. Reduction of nitrate to ammonia is one of the options available to remediate groundwater. In this study, nitrate in groundwater was removed using a zero-valent iron (ZVI) containing biochar synthesized by co-pyrolyzing iron oxide and sawdust biomass. Among the various biogases generated during the pyrolysis of biomass, CO and H₂ act as reducing agents to transform iron oxides to ZVI. Approximately 71% of nitrate was reduced to ammonium by ZVI-biochar at initial pH 2.0, and the reduction decreased sharply by the increase in pH. The mass of nitrate-N decreased is exactly same with the mass of ammonia-N formed. However, ammonium remained in the aqueous phase after reduction by ZVI-biochar, and the total nitrogen was not lowered. Acid-washed zeolite adsorbed most ammonium reduced by the ZVI-biochar and maintained the pH to acidic condition to facilitate the reduction of nitrate. The results of this study imply that nitrate-contaminated groundwater can be properly treated within the guidelines of water quality by synthesized ZVI-containing biochar.
Показать больше [+] Меньше [-]Geochemical fractionation, bioavailability, and potential risk of heavy metals in sediments of the largest influent river into Chaohu Lake, China Полный текст
2021
Liu, Bingxiang | Luo, Jun | Jiang, Shuo | Wang, Yan | Li, Yucheng | Zhang, Xuesheng | Zhou, Shaoqi
As the largest tributary flowing into Chaohu Lake, China, the Hangbu–Fengle River (HFR) has an important impact on the aquatic environment security of the lake. However, existing information on the potential risks of heavy metals (HMs) in HFR sediments was insufficient due to the lack of bioavailability data on HMs. Hence, geochemical fractionation, bioavailability, and potential risk of five HMs (Cr, Cu, Zn, Cd, and Pb) in HFR sediments were investigated by the combined use of the diffusive gradient in thin-films (DGT), sequential extraction (BCR), as well as the physiologically based extraction test (PBET). The average contents of Cd and Zn in the HFR Basin were more than the background values in the sediments of Chaohu Lake. A large percentage of BCR-extracted exchangeable fraction was found in Cd (8.69%), Zn (8.12%), and Cu (8.05%), suggesting higher bioavailability. The PBET-extracted fractions of five HMs were all almost closely positively correlated with their BCR-extracted forms. The pH was an important factor affecting the bioavailability of HMs. The average DGT-measured contents of Zn, Cd, Cr, Cu, and Pb were 28.07, 7.7, 3.69, 2.26, 0.5 μg/L, respectively. Only DGT-measured Cd significantly negatively correlated with Eh, indicating that Cd also had a high release risk under reducing conditions, similar to the risk assessment results. Our results could provide a reference for evaluating the potential bioavailabilities and ecological hazards of HMs in similar study areas.
Показать больше [+] Меньше [-]The atmospheric concentrations and emissions of major halocarbons in China during 2009–2019 Полный текст
2021
Yi, Liying | Wu, Jing | An, Minde | Xu, Weiguang | Fang, Xuekun | Yao, Bo | Li, Yixi | Gao, Ding | Zhao, Xingchen | Hu, Jianxin
Due to the characteristics of ozone-depleting and high global warming potential, chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) have been restricted by the Montreal Protocol and its amendments over the world. Considering that China is one of the main contributors to the emission of halocarbons, a long-term atmospheric observation on major substances including CFC-11 (CCl₃F), CFC-12 (CCl₂F₂), HCFC-22 (CHClF₂), HCFC-141b (CH₃CCl₂F), HCFC-142b (CH₃CClF₂) and HFC-134a (CH₂FCF₃) was conducted in five cities (Beijing, Hangzhou, Guangzhou, Lanzhou and Chengdu) of China during 2009–2019. The atmospheric concentrations of CFC-11, CFC-12, HCFC-141b and HCFC-142b all showed declining trends on the whole while those of HCFC-22 and HFC-134a were opposite. A paired sample t-test showed that the ambient mixing ratios of HCFC-22 and HFC-134a in cities were 41.9% and 25.7% higher on average than those in suburban areas, respectively, while the other substances did not show significant regional differences. The annual emissions of halocarbons were calculated using an interspecies correlation method and the results were generally consistent with the published estimates. Discrepancies between bottom-up inventories and the estimates in this study for CFCs emissions were found. Among the most consumed ozone depleting substances (ODSs) in China, CFCs accounted for 75.1% of the ozone depletion potential (ODP)-weighted emissions while HCFCs contributed a larger proportion (58.6%) of CO₂-equivalent emissions in 2019. China's emissions of HCFC-141b and HCFC-142b contributed the most to the global emission (17.8%–48.0%). The elimination of HCFCs in China will have a crucial impact on the HCFCs phase-out in the world.
Показать больше [+] Меньше [-]A critical review on human internal exposure of phthalate metabolites and the associated health risks Полный текст
2021
Huang, Senyuan | Qi, Zenghua | Ma, Shengtao | Li, Guiying | Long, Chaoyang | Yu, Yingxin
Phthalates (PAEs) are popular synthetic chemicals used as plasticizers and solvents for various products, such as polyvinyl chloride or personal care products. Human exposure to PAEs is associated with various diseases, resulting in PAE biomonitoring in humans. Inhalation, dietary ingestion, and dermal absorption are the major human exposure routes. However, estimating the actual exposure dose of PAEs via an external route is difficult. As a result, estimation by internal exposure has become the popular analytical methods to determine the concentrations of phthalate metabolites (mPAEs) in human matrices (such as urine, serum, breast milk, hair, and nails). The various exposure sources and patterns result in different composition profiles of PAEs in biomatrices, which vary from country to country. Nevertheless, the mPAEs of diethyl phthalate (DEP), di-n-butyl phthalate (DnBP), di-iso-butyl phthalate (DiBP), and di-(2-ethylhexyl) phthalate (DEHP) are predominant in the urine. These mPAEs have greater potential health risks for humans. Children have been observed to exhibit higher exposure risks to several mPAEs than adults. Besides age, other influencing factors for phthalate exposure are gender, jobs, and residential areas. Although many studies have reported biological monitoring of PAEs, only a few reviews that adequately summarized the reports are available. The current review appraised available studies on mPAE quantitation in human biomatrices and estimated the dose and health risks of phthalate exposure. While some countries lack biomonitoring data, some countries’ data do not reflect the current PAE exposure. Thence, future studies should involve frequent PAE biomonitoring to accurately estimate human exposure to PAEs, which will contribute to health risk assessments of human exposure to PAEs. Such would aid the formulation of corresponding regulations and restrictions by the government.
Показать больше [+] Меньше [-]Biotransformation of perfluoroalkyl acid precursors from various environmental systems: advances and perspectives Полный текст
2021
Zhang, Wenping | Pang, Shimei | Lin, Ziqiu | Mishra, Sandhya | Bhatt, Pankaj | Chen, Shaohua
Perfluoroalkyl acids (PFAAs) are widely used in industrial production and daily life because of their unique physicochemical properties, such as their hydrophobicity, oleophobicity, surface activity, and thermal stability. Perfluorosulfonic acids (PFSAs) and perfluorocarboxylic acids (PFCAs) are the most studied PFAAs due to their global occurrence. PFAAs are environmentally persistent, toxic, and the long-chain homologs are also bioaccumulative. Exposure to PFAAs may arise directly from emission or indirectly via the environmental release and degradation of PFAA precursors. Precursors themselves or their conversion intermediates can present deleterious effects, including hepatotoxicity, reproductive toxicity, developmental toxicity, and genetic toxicity. Therefore, exposure to PFAA precursors constitutes a potential hazard for environmental contamination. In order to comprehensively evaluate the environmental fate and effects of PFAA precursors and their connection with PFSAs and PFCAs, we review environmental biodegradability studies carried out with microbial strains, activated sludge, plants, and earthworms over the past decade. In particular, we review perfluorooctyl-sulfonamide-based precursors, including perfluroooctane sulfonamide (FOSA) and its N-ethyl derivative (EtFOSA), N-ethyl perfluorooctane sulfonamido ethanol (EtFOSE), and EtFOSE-based phosphate diester (DiSAmPAP). Fluorotelomerization-based precursors are also reviewed, including fluorotelomer alcohols (FTOH), fluorotelomer sulfonates (FTSA), and a suite of their transformation products. Though limited information is currently available on zwitterionic PFAS precursors, a preliminary review of data available for 6:2 fluorotelomer sulfonamide betaine (FTAB) was also conducted. Furthermore, we update and refine the recent knowledge on biotransformation strategies with a focus on metabolic pathways and mechanisms involved in the biotransformation of PFAA precursors. The biotransformation of PFAA precursors mainly involves the cleavage of carbon-fluorine (C–F) bonds and the degradation of non-fluorinated functional groups via oxidation, dealkylation, and defluorination to form shorter-chained PFAAs. Based on the existing research, the current problems and future research directions on the biotransformation of PFAA precursors are proposed.
Показать больше [+] Меньше [-]