Уточнить поиск
Результаты 1581-1590 из 7,990
Synthesis of TiO2/RGO with plasmonic Ag nanoparticles for highly efficient photoelectrocatalytic reduction of CO2 to methanol toward the removal of an organic pollutant from the atmosphere
2021
Bharath, G. | Prakash, J. | Rambabu, K. | Venkatasubbu, G Devanand | Kumar, Ashok | Lee, Seungjun | Theerthagiri, Jayaraman | Choi, Myong Yong | Banat, Fawzi
The synergistic photoelectrochemical (PEC) technology is a robust process for the conversion of CO₂ into fuels. However, designing a highly efficient UV–visible driven photoelectrocatalyst is still challenging. Herein, a plasmonic Ag NPs modified TiO₂/RGO photoelectrocatalyst (Ag–TiO₂/RGO) has been designed for the PEC CO₂ reduction into selective production of CH₃OH. HR-TEM analysis revealed that Ag and TiO₂ NPs with average sizes of 4 and 7 nm, respectively, were densely grown on the few-micron-sized 2D RGO nanosheets. The physicochemical analysis was used to determine the optical and textural properties of the Ag–TiO₂/RGO nanohybrids. Under VU-Vis light illumination, Ag–TiO₂/RGO photocathode possessed a current density of 23.5 mA cm⁻² and a lower electrode resistance value of 125 Ω in CO₂-saturated 1.0 M KOH-aqueous electrolyte solution. Catalytic studies showed that the Ag–TiO₂/RGO photocathode possessed a remarkable PEC CO₂ reduction activity and selective production of CH₃OH with a yield of 85 μmol L⁻¹ cm⁻², the quantum efficiency of 20% and Faradic efficiency of 60.5% at onset potential of −0.7 V. A plausible PEC CO₂ reduction mechanism over Ag–TiO₂/RGO photocathode is schematically demonstrated. The present work gives a new avenue to develop high-performance and stable photoelectrocatalyst for PEC CO₂ reduction towards sustainable liquid fuels production.
Показать больше [+] Меньше [-]In situ catalytic reforming of plastic pyrolysis vapors using MSW incineration ashes
2021
Ahamed, Ashiq | Liang, Lili | Chan, Wei Ping | Tan, Preston Choon Kiat | Yip, Nicklaus Tze Xuan | Bobacka, Johan | Veksha, Andrei | Yin, Ke | Lisak, Grzegorz
The valorization of municipal solid waste incineration bottom and fly ashes (IBA and IFA) as catalysts for thermochemical plastic treatment was investigated. As-received, calcined, and Ni-loaded ashes prepared via hydrothermal synthesis were used as low-cost waste-derived catalysts for in-line upgrading of volatile products from plastic pyrolysis. It was found that both IBA and air pollution control IFA (APC) promote selective production of BTEX compounds (i.e., benzene, toluene, ethylbenzene, and xylenes) without significantly affecting the formation of other gaseous and liquid species. There was insignificant change in the product distribution when electrostatic precipitator IFA (ESP) was used, probably due to the lack of active catalytic species. Calcined APC (C-APC) demonstrated further improvement in the BTEX yield that suggested the potential to enhance the catalytic properties of ashes through pre-treatment. By comparing with the leaching limit values stated in the European Council Decision, 2003/33/EC for the acceptance of hazardous waste at landfills, all the ashes applied remained in the same category after the calcination and pyrolysis processes, except the leaching of Cl⁻ from the ESP, which was around the borderline. Therefore, the use of ashes in catalytic reforming application do not significantly deteriorate their metal leaching behavior. Considering its superior catalytic activity towards BTEX formation, C-APC was loaded with Ni at 15 and 30 wt%. The Ni-loading favored an increase in overall oil yield, while reducing the gas yield when compared to the benchmark Ni loaded ZSM catalyst. However, Ni addition also caused the formation of more heavier hydrocarbons (C20–C35) that would require post-treatment to recover favorable products like BTEX.
Показать больше [+] Меньше [-]Nationwide monitoring of microplastics in bivalves from the coastal environment of Korea
2021
Cho, Youna | Shim, Won Joon | Jang, Mi | Han, Gi Myung | Hong, Sang Hee
Bivalves are useful bioindicators of microplastic contamination in the marine environment for several reasons, such as extensive filter feeding activity, broad geographical distribution, and limited movement capability. This study conducted a nationwide monitoring of microplastic pollution along the Korean coasts using filter-feeding bivalves (including oyster, mussel, and Manila clam) as bioindicators to identify the national contamination level and characteristics of microplastics. Seawater sample was collected from the same sampling stations of oyster and mussel for comparison. Microplastics were widely distributed in both coastal bivalves and waters with mean concentrations of 0.33 ± 0.23 n/g (1.21 ± 0.68 n/individual) in oyster/mussel, 0.43 ± 0.32 n/g (2.19 ± 1.20 n/individual) in Manila clam, and 1400 ± 560 n/m³ in seawater. Despite the lack of significant relationship in the abundance of microplastics, their dominant features such as size, shape, color and polymer type were similar between bivalves and seawater. Fragments (69% for oyster/mussel, 72% for Manila clam, and 77% for seawater), particles smaller than 300 μm (96% for oyster/mussel, 83% for Manila clam, and 84% for seawater) and colorless (79% for oyster/mussel, 85% for Manila clam, 75% for seawater) were the dominant shape, size and color, respectively. The major polymer types were polypropylene, polyethylene, and polyester. The microplastic level in bivalves was relatively high in urbanized areas with a wide diversity of polymer types compared with those in non-urbanized areas, and the proportion of polystyrene in the Korean samples was abundant compared with other regions due to wide use of polystyrene products in Korea. Our result suggests that microplastic contamination is widespread in the Korean coastal environment, and bivalves can reflect the microplastic pollution characteristics of the surrounding waters where they live.
Показать больше [+] Меньше [-]Sources of PM2.5 and its responses to emission reduction strategies in the Central Plains Economic Region in China: Implications for the impacts of COVID-19
2021
Du, Huiyun | Li, Jie | Wang, Zifa | Yang, Wenyi | Chen, Xueshun | Wei, Ying
The Central Plains Economic Region (CPER) located along the transport path to the Beijing-Tianjin-Hebei area has experienced severe PM₂.₅ pollution in recent years. However, few modeling studies have been performed on the sources of PM₂.₅, especially the impacts of emission reduction strategies. In this study, the Nested Air Quality Prediction Model System (NAQPMS) with an online tracer-tagging module was adopted to investigate source sectors of PM₂.₅ and a series of sensitivity tests were conducted to investigate the impacts of different sector-based mitigation strategies on PM₂.₅ pollution. The response surfaces of pollutants to sector-based emission changes were built. The results showed that resident-related sector (resident and agriculture), fugitive dust, traffic and industry emissions were the main sources of PM₂.₅ in Zhengzhou, contributing 49%, 19%, 15% and 13%, respectively. Response surfaces of pollutants to sector-based emission changes in Henan revealed that the combined reduction of resident-related sector and industry emissions efficiently decreased PM₂.₅ in Zhengzhou. However, reduced emissions in only the Henan region barely satisfied the national air quality standard of 75 μg/m³, whereas a 50%–60% reduction in resident-related sector and industry emissions over the whole region could reach this goal. On severely polluted days, even a 60% reduction in these two sectors over the whole region was insufficient to satisfy the standard of 75 μg/m³. Moreover, a reduction in traffic emissions resulted in an increase in the O₃ concentration. The results of the response surface method showed that PM₂.₅ in Zhengzhou decreased by 19% in response to the COVID-19 lockdown, which approached the observed reduction of 21%, indicating that the response surface method could be employed to study the impacts of the COVID-19 lockdown on air pollution. This study provides a scientific reference for the formulation of pollution mitigation strategies in the CPER.
Показать больше [+] Меньше [-]Diversity and predicted inter- and intra-domain interactions in the Mediterranean Plastisphere
2021
Amaral-Zettler, Linda A. | Ballerini, Tosca | Zettler, Erik R. | Asbun, Alejandro Abdala | Adame, Alvaro | Casotti, Raffaella | Dumontet, Bruno | Donnarumma, Vincenzo | Engelmann, Julia C. | Frère, Laura | Mansui, Jeremy | Philippon, Marion | Pietrelli, Loris | Sighicelli, Maria
This study investigated the biogeography, the presence and diversity of potentially harmful taxa harbored, and potential interactions between and within bacterial and eukaryotic domains of life on plastic debris in the Mediterranean. Using a combination of high-throughput DNA sequencing (HTS), Causal Network Analysis, and Scanning Electron Microscopy (SEM), we show regional differences and gradients in the Mediterranean microbial communities associated with marine litter, positive causal effects between microbes including between and within domains of life, and how these might impact the marine ecosystems surrounding them. Adjacent seas within the Mediterranean region showed a gradient in the microbial communities on plastic with non-overlapping endpoints (Adriatic and Ligurian Seas). The largest predicted inter-domain effects included positive effects of a novel red-algal Plastisphere member on its potential microbiome community. Freshwater and marine samples housed a diversity of fungi including some related to disease-causing microbes. Algal species related to those responsible for Harmful Blooms (HABs) were also observed on plastic pieces including members of genera not previously reported on Plastic Marine Debris (PMD).
Показать больше [+] Меньше [-]Heavy metal detoxification mechanisms by microalgae: Insights from transcriptomics analysis
2021
Tripathi, Shweta | Poluri, Krishna Mohan
Heavy metal pollution in ecosystem is a global threat. The associated toxicity and carcinogenic nature of heavy metals/metalloids such as mercury, cadmium, lead, and arsenic are imposing a severe risk to both ecological diversity and human lives. Harnessing the adaptive feature of microalgae for remediating toxic heavy metal has reached a milestone in past few decades. Transcriptomics analyses have provided mechanistic insights to map the dynamics of cellular events under heavy metal stress, thus deciphering the strategic responses of microalgae. Here, the present review comprehensively addresses the elicited molecular responses of microalgae to detoxify the heavy metal stress. The review highlights the intricate role of biochemical components and signaling networks mediating stress responsive transitions of microalgae at physiological level. Furthermore, the differential gene expression signifying the transporters involved in uptake, distribution/sequestration, and efflux of heavy metal has also been reviewed. In a nutshell, this study provided a comprehensive understanding of the molecular mechanisms adopted by microalgae at transcriptome level to nullify the oxidative stress while detoxifying the heavy metals.
Показать больше [+] Меньше [-]Colonized extremophile Deinococcus radiodurans alleviates toxicity of cadmium and lead by suppressing heavy metal accumulation and improving antioxidant system in rice
2021
Dai, Shang | Chen, Qi | Jiang, Meng | Wang, Binqiang | Xie, Zhenming | Yu, Ning | Zhou, Yulong | Li, Shan | Wang, Liangyan | Hua, Yuejin | Tian, Bing
Cadmium (Cd) and lead (Pb) are the major toxic heavy metals accumulated in rice and pose a serious threat to human health. The most important remediation strategy is to reduce the translocation of these heavy metals from polluted soil to rice. Bioremediation using microorganisms had been widely used for preventing environmental heavy metal pollution, and the interaction between microorganisms and plants is critical to reduce the heavy metal stress. In this study, we demonstrated that an extremophile Deinococcus radiodurans, especially its mutant strain-Δdr2577 which is deficient in cell surface-layer, could efficiently prevent the translocation and damages of Cd or Pb in rice. The bacterial cells efficiently removed Cd or Pb from culture medium. Following colonization of Δdr2577 cells in rice root, Cd level decreased to 71.6% in root and 60.9% in shoot, comparing to the plants treated with Cd alone; Pb level decreased to 73.3% in root and 56.9% in shoot, comparing to the plants treated with Pb alone. Meanwhile, the bacterial cells released their intracellular antioxidant-related molecules including glutamate and manganese ions into culture medium. Accumulation of glutamate and manganese ions detected in rice root and shoot ameliorate Cd/Pb-induced oxidative stress as indicated by reduced levels of ROS and enhanced activities of antioxidant enzymes in rice. Our results provide a potential application of an extremophile bacterium in alleviating heavy metal toxicity in rice.The main findings of the work reveal the interaction between the D. radiodurans and rice, as well as the alleviating mechanism of Cd and Pb toxicity through suppressing heavy metal accumulation and improving the antioxidant system in rice by the extremophile bacterium.
Показать больше [+] Меньше [-]Exposure to methylmercury and inorganic mercury in the food does not lead to trophic magnification in the sea star Asterias rubens
2021
Bjerregaard, Poul | Møller, Lise Marianne
Methylmercury accumulated at the top of aquatic food chains constitutes a toxicological risk to humans and other top predators. Biomagnification of methylmercury takes place among vertebrates at the higher trophic levels, but this process is less elucidated in benthic invertebrates at the lower trophic levels. Therefore, we investigated the accumulation from food and elimination of methylmercury and inorganic mercury in the benthic sea star Asterias rubens (L.) – a representative of trophic level ~3 - in laboratory experiments. Sea stars fed over 49 days with contaminated mussels (Mytilus edulis) accumulate methylmercury and inorganic mercury to the highest concentrations in the digestive glands, the pyloric caeca, less in stomach, gonad, tube feet, aboral body wall and not to detectable levels in the coelomic fluid. Concerning whole body contents, steady states were reached for both methylmercury and inorganic mercury during the 7-week feeding period and the sea stars reached approximately ½ and ¼ of the concentrations in the mussel food for the two mercury forms, respectively. Half-lives for the elimination of the two mercury forms varied between 45 and 173 days in a 140-d elimination period following the feeding period; inorganic mercury was eliminated faster than methylmercury. Examination of total mercury concentrations in field-collected sea stars confirmed this lack of trophic magnification in relation to the major food items, soft parts of molluscs. We suggest that mercury is not trophically magnified in sea stars 1) because they eliminate methylmercury faster than larger fish and decapod crustaceans and 2) maybe more importantly, because inorganic mercury with its faster elimination constitutes a larger fraction of the total mercury in the food at the lower trophic levels - as opposed to methylmercury which dominates at the higher trophic levels.
Показать больше [+] Меньше [-]In vitro renal toxicity evaluation of copper-based metal–organic framework HKUST-1 on human embryonic kidney cells
2021
Chen, Yi-Chun | Andrew Lin, Kun-Yi | Chen, Ku-Fan | Jiang, Xin-Yu | Lin, Chia-Hua
HKUST-1 is currently studied for a very diverse range of applications. Despite its exciting potential, significant concerns remain regarding the safety of HKUST-1. Therefore, human embryonic kidney 293 (HEK293) cells were used to verify the renal toxicity of HKUST-1. In this study, HKUST-1 induced concentration-dependent cytotoxic effects in HEK293 cells. The depolarization of mitochondrial membrane potential and formation of apoptotic bodies and autophagic vesicles were observed in HKUST-1–treated HEK293 cells. Oxidative (oxidative stress and haem oxygenase-1 activation) and inflammatory responses (NF-κB and NLRP3 activation) in HEK293 cells were induced by HKUST-1 exposure. In addition, the observed reduction in NAD(P)H levels in HKUST-1–treated HEK293 cells may be attributable to PARP-1 activation following DNA single- and double-strand breaks. The HKUST-1–induced depletion of zonula occludens proteins in HEK293 cells might lead to altered renal barrier integrity. The variations of α1-antitrypsin, oxidised α1-antitrypsin and NLRP3 protein expression in HEK293 cells suggested that HKUST-1 increases the risk of chronic kidney diseases. However, most of these adverse effects were significantly induced only by high HKUST-1 concentration (100 μg/mL), which do not reflect the actual exposure. Thus, the toxic risk of HKUST-1 appears to be negligible.
Показать больше [+] Меньше [-]Mixtures of co-occurring chemicals in freshwater systems across the continental US
2021
Marshall, Melanie M. | McCluney, Kevin E.
Trace chemicals are common in marine and freshwater ecosystems globally. It is recognized that in the environment, individual chemicals are rarely found in isolation. Insufficient work has examined which chemicals co-occur and which methods best identify these mixtures. Using an existing data set, we found evidence that simple correlation analysis is better at identifying mixtures of commonly co-occurring trace chemicals than more commonly used PCA methods. Moreover, simple correlation analysis, unlike PCA, can be used in cases with unbalanced designs and with data points below reportable limits. Application of this approach allowed identification of 10 groups of chemicals commonly found together in freshwaters of the continental US, representing common “chemical syndromes.” Better identification of co-occurring chemical combinations could aid in our understanding of biological and ecological effects of aquatic contaminants. This research provides evidence of correlation analyses as a more effective method for identifying commonly co-occurring aquatic contaminants. We also examined the patterns of these mixtures with a dataset consisting of concentrations of 406 trace chemicals from 38 sample locations across the continental US.
Показать больше [+] Меньше [-]