Уточнить поиск
Результаты 1681-1690 из 7,995
Health and economic benefits of clean air policies in China: A case study for Beijing-Tianjin-Hebei region Полный текст
2021
Xu, Meng | Qin, Zhongfeng | Zhang, Shaohui | Xie, Yang
Exposure to PM₂.₅ is associated with many adverse health effects, leading to additional social costs. The Blue Sky Protection Campaign (BSPC) has been implemented in 2018 in the Beijing-Tianjin-Hebei (BTH) area to control air pollution. This study assesses PM₂.₅-related health and economic benefits of the BSPC in the BTH region. Results show that by 2020, PM₂.₅ reduction can avoid 3561 thousand morbidity cases (equivalent to a 24% reduction in the 2020 baseline scenario) and 24 thousand premature deaths (12%) in the BTH region, with the majority benefit in Hebei. By 2030, the avoided morbidity and mortality cases will be 2943 (18%) thousand and 20 (9%) thousand, respectively. PM₂.₅ reductions are highly effective in reducing work time loss, which will decrease the total annual work time by 1.7 × 10⁸ h (24%) in the BTH region by 2020. From the economic aspect, the reduced PM₂.₅ concentration will save 30 million USD (25%) health expenditures and avoid 60 billion USD (13%) economic loss by using the value of statistical life (VSL) by 2020. In 2030, the health expenditures and economic loss will also decrease significantly, with 17 million USD (18%) and 63 billion USD (10%), respectively, in the BTH region. Besides, the economic benefits far exceed the policy costs of the BSPC, and the Δ benefit/Δ cost ratios of Beijing are significantly higher than those of Hebei. The BSPC in BTH has significant positive health and economic impacts. This study can provide a basis for future PM₂.₅-related health risk studies at an urban level in China.
Показать больше [+] Меньше [-]Human waste used as nesting material affects nest cooling in the clay-colored thrush Полный текст
2021
Corrales-Moya, Josué | Barrantes, Gilbert | Chacón-Madrigal, Eduardo | Sandoval, Luis
The internal temperature of nests largely depends on the materials used in their construction because the characteristics of each material affect the isolation of nest walls. In urban environments, the availability of natural materials for nest building decreases, while the availability of artificial materials increases. Therefore, many urban bird species use more artificial materials for nest building inside cities, which may affect the thermal properties of the nest. We conducted an experiment to measure the effect of artificial materials included as part of the nest structure, on nest thermoregulation. We used as a model, nests of the clay-colored thrush (Turdus grayi), an urban bird species that have been reported using artificial nest materials. In our experiment, we measured how variation in artificial materials mass affects the nest cooling rate in a climate-controlled room. We found that artificial materials increased the cooling rate of clay-colored thrush nests, compared with nests with only natural materials. This result is especially relevant because showed a negative direct effect of the use of artificial material for nest building in birds. Considering that the availability of artificial material is increasing in urban areas, while natural material is decreasing, it is expected that the negative effect of using artificital material for nest construction would increase in the clay-colored thrush and other city bird species.
Показать больше [+] Меньше [-]The role of available phosphorous in vanadate decontamination by soil indigenous microbial consortia Полный текст
2021
Zhang, Han | Zhang, Baogang | Gao, Yueqi | Wang, Yu | Lü, Jianping | Chen, Junlin | Chen, Dandan | Deng, Qingling
Indigenous microbial consortia are closely associated with soil inherent components including nutrients and minerals. Although indigenous microbial consortia present great prospects for bioremediation of vanadate [V(V)] contaminated soil, influences of some key components, such as available phosphorus (AP), on V(V) biodetoxification are poorly understood. In this study, surface soils sampled from five representative vanadium smelter sites were employed as inocula without pretreatment. V(V) removal efficiency ranged from 81.7 ± 1.4% to 99.5 ± 0.2% in batch experiment, and the maximum V(V) removal rates were positively correlated with AP contents. Long-term V(V) removal was achieved under fluctuant hydrodynamic and hydrochemical conditions in column experiment. Geobacter and Bacillus, which were found in both original soils and bioreactors, catalytically reduced V(V) to insoluble tetravalent vanadium. Phosphate-solubilizing bacterium affiliated to Gemmatimonadaceae were also identified abundantly. Microbial functional characterization indicated the enrichment of phosphate ABC transporter, which could accelerate V(V) transfer into intercellular space for efficient reduction due to the structural similarity of V(V) and phosphate. This study reveals the critical role of AP in microbial V(V) decontamination and provides promising strategy for in situ bioremediation of V(V) polluted soil.
Показать больше [+] Меньше [-]The effects of vehicular emissions on the activity and diversity of the roadside soil microbial community Полный текст
2021
De Silva, Shamali | Ball, A. S. | Shahsavari, Esmaeil | Indrapala, Demidu V. | Reichman, Suzie M.
Motor vehicles emit a variety of pollutants including metals, petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAHs). The relationships between metals, petroleum hydrocarbons and PAHs, soil respiration and microbial diversity (fungi and bacteria) were studied using control (n = 3) and roadside soils (n = 27) with different exposure periods to vehicle emissions (2–63 years). Bacterial diversity was found to be higher than control sites (P = 0.002) but was the same across different categories of road age (P = 0.328). Significant (r = −0.49, P = 0.007) contrasting behaviour of fungal and bacterial diversity was reported, with diversity increasing across all road types for bacteria and decreasing across all road types for fungi compared to control soils. Analysis of the bacterial community identified three distinct clusters, separated on age of contamination, suggesting that roadside bacterial communities change over time with pollution from vehicles with the potential development of metal resistant bacteria in roadside soils. In contrast, for fungal communities, a reduction in diversity with time of exposure to roadside vehicle emissions was observed suggesting the potential for reduced ecosystem functionality and soil health in roadside soils. This is the first study in the published literature to include both bacterial and fungal responses from aged roadside soils. The results from this study suggest that normal functionality of soil ecosystem services is being affected in roadside soils, potentially globally.
Показать больше [+] Меньше [-]Assessment of biopiles treatment on polluted soils by the use of Eisenia andrei bioassay Полный текст
2021
Olivia, Lorente-Casalini | Minerva, García-Carmona | Rocío, Pastor-Jáuregui | Francisco José, Martín-Peinado
A long-term case of residual pollution is studied after 20 years since the largest mining accident in Spain (the Aznalcóllar spill) happened. This pollution is manifested through a surface zoning consisting of bare soils (B0), sparsely vegetated soils (B1), and densely vegetated and recovered soils (B2). A biopiles treatment with a mixture of contaminated soils (B0 and B1) with recovered soils (B2) at 50% (w/w), and vermicompost addition (50 tons ha-1) was evaluated. To assess the effectiveness of treatments, total, water-soluble, and bioavailable fractions of the most polluting elements in the zone (Cu, Zn, As, Pb, Cd, and Sb) was analyzed. To evaluate the potential risk of contamination for the ecosystem, a bioassay with earthworm Eisenia andrei was carried out. Twenty years after the accident, there are still soils where total As and Pb exceed the regulatory levels and water-soluble Zn and As exceed the toxicity guidelines. According to toxicity bioassay, weight variation and juvenile production of earthworms showed an improvement after biopiles treatment, with values that trend to be similar to those of recovered soils. The only bioaccumulated element in earthworms was Cd (BAF>1), both in polluted as in treated soils, which indicates the possible existence of exclusion mechanisms of the other pollutants by earthworms. The comparison between biopiles and polluted soils showed no significant differences for the bioaccumulation factor of trace elements, with the exception of Zn and Cu, which slightly increased after treatment. According to our results, biopiles treatment combined with vermicompost addition is a good technique for the recovery of residual contaminated areas, by the improvement of soil properties and the reduction of the potential toxicity; anyway, monitoring of soils and organisms is needed to prevent the increase of bioavailability of some potentially pollutant elements over time.
Показать больше [+] Меньше [-]Interactions between Escherichia coli survival and manganese and iron oxides in water under freeze-thaw Полный текст
2021
Wang, Xu | Yuan, Weilin | Tao, Jiahui | Xu, Meng | Guo, Ping
Pathogenic survivals were dramatically affected by Fe³⁺ and Mn²⁺ under freeze-thaw (FT), and the dissolutions of manganese and iron oxides (MIOs) were also accelerated under FT. But the mutual influences of pathogenic bacterial survival and MIOs under FT have not been profoundly explored yet. In this work, aqueous systems containing Escherichia coli as well as synthetic ferrihydrite (Fh) and manganese dioxide (MnO₂) were experimented under simulated FT cycles to study the mutual influences of metal oxides and bacteria survival while oxide dissolutions and appearances, bacterial morphology and activities (survival number, cell surface hydrophobicity (CSH) and superoxide dismutase (SOD)) were obtained. The results showed that broken E. coli cells by ice growth were observed, but both oxides promoted E. coli survival under FT stress and prolonged bacterial survival time by 1.2–2.9 times, which were mainly attributed to the release of Fe³⁺ and Mn²⁺ caused by FT. The dissolutions of Fh and MnO₂ under FT, which took place at a low level in absence of E. coli cells, were markedly enhanced with bacterial interferences by 2–8 times and higher dissolved manganese concentrations were detected than iron. This was probably because that concentrated organic matters which were released from broken cells, rejected into unfrozen liquid layer and acted as electron donors and ligands to oxide dissolution. Compared with Fh system, more significant promotion of E. coli survival under FT in MnO₂ systems were found because of more SOD generations associated with high dissolved manganese concentrations and the stronger cellular protection by MnO₂ aggregations. The results suggested that FT significantly influenced the interactions between metal oxides and bacterial in water, resulting to changes in pathogen activity and metal element cycling.
Показать больше [+] Меньше [-]Uptake and metabolism of nonylphenol in plants: Isomer selectivity involved with direct conjugation Полный текст
2021
Sun, Jianqiang | Yang, Xindong | Shen, Hong | Xu, Ying | Zhang, Anping | Gan, Jay
Nonylphenol (NP), an environmental estrogen, is actually a complicated mixture of isomers, although it is commonly considered to be a single compound. There are many routes for crops to come into contact with NP; however, little is known about the plant uptake and metabolism of NP, especially at the isomer level. This study comparatively evaluated the uptake and in-planta metabolism of 4-n-NP and its 10 isomers using both carrot cells and intact plants. The rapid metabolism of 4-n-NP was observed in the callus tissues and intact plants with half-lives of 2 h and 4.72 d, respectively. Six conjugates of 4-n-NP were identified in the cell extracts using high resolution mass spectrometry. The primary transformation pathway was found to be the direct conjugation (Phase II metabolism) with the parent compound at the hydroxyl. Furthermore, 4-NP isomers with short side chains and/or bulky α-substituents were more resistant to plant metabolism and showed a greater tendency for accumulation. The influence of the side chains to the isomer selectivity was verified by the molecular docking between glycosyltransferase and 4-NP isomers. This study highlighted the necessity to consider isomer-specificity in the plant accumulation of NP and the environmental and human health implications of NP conjugates.
Показать больше [+] Меньше [-]Patterns of distribution and accumulation of trace metals in Hysterothylacium sp. (Nematoda), Phyllodistomum sp. (Digenea) and in its fish host Hoplias malabaricus, from two neotropical rivers in southeastern Brazil Полный текст
2021
Rosa Leite, Lucas Aparecido | dos Reis Pedreira Filho, Walter | Kozlowiski de Azevedo, Rodney | Doro Abdallah, Vanessa
Here we evaluated the potential for trace metal accumulation of two parasitic species, Hysterothylacium sp. (Nematoda) and Phyllodistomum sp. (Digenea), found parasitizing Hoplias malabaricus, a characiform fish also known as trahira, collected from two neotropical rivers, Jacaré-Pepira and Jacaré-Guaçú, in southeastern Brazil. Fish were collected between July 2017 and July 2019, totaling 90 fish specimens analyzed, 45 from each river. From fish, we take samples of three different tissues: muscle, intestine and liver. Along with the parasite samples taken from fish hosts, tissue samples were analyzed by an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) for obtaining the trace metal (Al, Cr, Mn, Fe, Ni, Cu, As, Cd e Pb) concentrations. All elements were found in statistically higher concentrations in the parasites, both nematodes and digeneans, than in the host tissues, but in comparison, was observed that Hysterothylacium sp. had higher concentrations than those obtained in Phyllodistomum sp. We also found that uninfected fish had statistically higher concentrations of metals than infected ones. And in those who are infected, the size of the parasitic infrapopulations correlated negatively with the concentrations of trace metals obtained in the hosts tissues, that is, the concentrations in fish showed a tendency to decrease as the parasitic infrapopulations increased, or vice versa. In addition, our results show that the influence of the parasitic infrapopulations on metal concentrations in the fish host is not affected in cases of mono-infection or co-infection.
Показать больше [+] Меньше [-]A review of the impact of xenobiotics from dietary sources on infant health: Early life exposures and the role of the microbiota Полный текст
2021
Calatayud Arroyo, M. | García Barrera, T. | Callejón Leblic, B. | Arias Borrego, A. | Collado, M.C.
Xenobiotics are worldwide distributed and humans are unavoidably exposed to multiple chemical compounds during life, from preconception to adulthood. The human microbiota is mainly settled during early life and modulate host health and fitness. One of the main routes for chemical exposure is by intake of contaminated food and water. Thus, the interplay between diet-xenobiotics-microbiota during pregnancy and perinatal period may have relevant consequences for infant and adult health. Maternal exposure to metal(oid)s, persistent organic pollutants, and some food additives can modify the infant’s microbiota with unknown consequences for child or adult health. Toxicants’ exposure may also modulate the maternal transfer of microorganisms to the progeny during birth and breastfeeding; however, scarce information is available. The rapid increase in releasing novel chemicals to the environment, the exposure to chemical mixtures, the chronic/low dose scenario, and the delay in science-stakeholders action call for novel and groundbreaking approaches to improve a comprehensive risk assessment in sensitive population groups like pregnant women and neonates, with emphasis on microbiota as modulating factor and target-organ of xenobiotic’s toxicity.
Показать больше [+] Меньше [-]Phycoremediation of X-ray developer solution towards silver removal with concomitant lipid production Полный текст
2021
Sharma, Swati | Garlapati, Vijay Kumar
The present research is mainly focusing on the characterization of X-ray developer solution and its toxic tolerance studies with Desmodesmus armatus towards the phycoremediation studies for removal of pollutants, silver, and concomitant lipid production. The characterization results suggested the presence of 1.229 ± 0.004 g/l BOD, 27.29 ± 0.230 g/l COD with a silver content of 0.01791 ± 0.000 g/l. The tolerance and toxicity limits of with X-ray developer solution reveals the remarkable growth of microalgae in 3:1.dilution ratio of BBM in the X-ray developer solutions. The phycoremediation with 19 days period shown the noticeable results with a relative BOD (20.86%), COD (13.88%), with 57.10% corresponding total phosphorous removal. The phycoremediation also has proven better relative silver removal potential of 44.06% on the 19th day with concomitant 1.392% lipid production. Overall, the present study shows the potential phycoremediation strategy of hazardous X-ray developer solutions with possible concurrent lipid production through a sustainable approach.
Показать больше [+] Меньше [-]