Уточнить поиск
Результаты 1741-1750 из 8,088
Role of emissions and meteorology in the recent PM2.5 changes in China and South Korea from 2015 to 2018 Полный текст
2021
Bae, Minah | Kim, Byeong-Uk | Kim, Hyun Cheol | Kim, Jhoon | Kim, Soontae
In this study, we examined the change rates of PM₂.₅ concentrations, aerosol optical depth (AOD), and the concentrations of PM₂.₅ precursors, such as SO₂ and NO₂, in China and South Korea using surface and satellite observations from 2015 to 2018. To quantify the impacts of the emissions and meteorology on the concentration changes, we performed a series of air quality simulations with year-specific meteorology and a fixed anthropogenic emissions inventory. The surface PM₂.₅ observations in China and South Korea decreased at rates of 9.1 and 4.3%/yr during the study period, respectively. The AODs from Moderate Resolution Imaging Spectroradiometer (MODIS) and Geostationary Ocean Color Imager (GOCI) also decreased faster over China than the AODs over South Korea. For the PM₂.₅ decrease in China, the emission impact was more significant (73%) than the meteorology impact (27%). On the contrary, in South Korea, the emissions and meteorology impacts on PM₂.₅ reductions were similar (51% vs 49%). The SO₂ concentration over China in 2018 significantly reduced to approximately half of the level in 2015. In turn, the sulfate concentration in Baengnyeong (BN), located in a downwind pathway from China to South Korea, decreased at a rate of 0.79%/month. However, the nitrate concentration in BN showed an increasing trend due to the non-linear chemical reactions among sulfate-nitrate-ammonium. The increased nitrate compensated for the reduced PM₂.₅ concentration from the sulfate decrease at BN. Additionally, the number of high (>50 μg/m³) PM₂.₅ concentration days continuously decreased in China, but the number in South Korea increased. It is noted that emission reductions in an upwind area do not guarantee corresponding air quality improvement in the downwind area when complex secondary aerosol formation processes, as well as spatiotemporal changes in meteorology, are involved in the transboundary transport of air pollutants.
Показать больше [+] Меньше [-]Seasonal distribution pattern and bioaccumulation of Polycyclic aromatic hydrocarbons (PAHs) in four bioindicator coastal fishes of Argentina Полный текст
2021
Recabarren-Villalón, Tatiana | Ronda, Ana C. | Oliva, Ana L. | Cazorla, Andrea Lopez | Marcovecchio, Jorge E. | Arias, Andrés H.
Polycyclic aromatic hydrocarbons (PAHs) are pollutants of global concern in coastal environments. They have a wide range of biological toxicity and due to their inherent properties, can easily bioaccumulate in organisms and concentrate in the environment. This work evaluated, in an integrated way, the seasonal PAH distribution patterns in sediments and four bioindicators fish species in a highly impacted estuary of Argentina; besides, their bioaccumulation patterns were assessed for the first time as indicator of ecological risk. The highest PAH levels in fish were found for Ramnogaster arcuata with an average of 64 ng g⁻¹ w.w., followed by Micropogonias furnieri (45 ng g⁻¹ w.w.), Cynoscion guatucupa (28 ng g⁻¹ w.w.), and Mustelus schmitti (16 ng g⁻¹ w.w.). Fish presented the highest PAH levels in fall with a predominance of petrogenic PAHs in colder seasons and pyrolytic PAHs in warmer seasons. Sediments presented an average of 233 ng g⁻¹ d.w. with the same seasonal composition pattern of the fish tissues. Additionally, the data suggested that the main source of PAHs are wastewater discharges. The bioaccumulation factor (BAF) of PAHs in the tested fishes were found to range from 0.3 to 8. The highest values were observed during fall and winter, while bioaccumulation did not occur in moist spring and summer samples, which would suggest a high biotransformation process during these seasons. Results suggested that class III of juvenile C. guatucupa and M. furnieri, and adults R. arcuata are more sensitive bioindicators of chronic PAH contamination and that their bioaccumulation is independent of the compound hydrophobicity; this could have a positively influence on the criteria used for biological monitoring programs along the Atlantic coast. In addition, the presented BAF data on the target species will serve as a useful pollution indicator for South Atlantic coastal fish.
Показать больше [+] Меньше [-]In situ calibration of polar organic chemical integrative sampler (POCIS) for monitoring of pharmaceuticals in surface waters Полный текст
2021
Vrana, Branislav | Urík, Jakub | Fedorova, Ganna | Švecová, Helena | Grabicová, Kateřina | Golovko, Oksana | Randák, Tomáš | Grabic, Roman
POCIS is the most widely applied passive sampler of polar organic substances, because it was one of the first commercially available samplers for that purpose on the market, but also for its applicability for a wide range of substances and conditions. Its main weakness is the variability of sampling performance with exposure conditions. In our study we took a pragmatic approach and performed in situ calibration for a set of 76 pharmaceuticals and their metabolites in five sampling campaigns in surface water, covering various temperature and flow conditions. In individual campaigns, RS were calculated for up to 47 compounds ranging from 0.01 to 0.63 L d⁻¹, with the overall median value of 0.10 L d⁻¹. No clear changes of RS with water temperature or discharge could be found for any of the investigated substances. The absence of correlation of experimental RS with physical-chemical properties in combination with the lack of mechanistic understanding of compound uptake to POCIS implies that practical estimation of aqueous concentrations from uptake in POCIS depends on compound-specific experimental calibration data. Performance of POCIS was compared with grab sampling of water in seven field campaigns comprising multiple sampling sites, where sampling by both methods was done in parallel. The comparison showed that for 25 of 36 tested compounds more than 50% of POCIS-derived aqueous concentrations did not differ from median of grab sampling values more than by a factor of 2. Further, for 30 of 36 compounds, more than 80% of POCIS data did not differ from grab sampling data more than by a factor of 5. When accepting this level of accuracy, in situ derived sampling rates are sufficiently robust for application of POCIS for identification of spatial and temporal contamination trends in surface waters.
Показать больше [+] Меньше [-]A novel method to evaluate chemical concentrations in muddy and sandy coastal regions before and after oil exposures Полный текст
2021
Xia, Junfei | Zhang, Wei | Ferguson, Alesia C. | Mena, Kristina D. | Özgökmen, Tamay M. | Solo-Gabriele, Helena M.
Oil spills can result in changes in chemical concentrations along coastlines. In prior work, these concentration changes were used to evaluate the date sediment was impacted by oil (i.e., oil exposure date). The objective of the current study was to build upon prior work by using the oil exposure date to compute oil spill chemical (OSC) concentrations in shoreline sediments before and after exposure. The new method was applied to OSC concentration measures collected during the Deepwater Horizon oil spill with an emphasis on evaluating before and after concentrations in muddy versus sandy regions. The procedure defined a grid that overlaid coastal areas with chemical concentration measurement locations. These grids were then aggregated into clusters to allow the assignment of chemical concentration measurements to a uniform coastal type. Performance of the method was illustrated for ten chemicals individually by cluster, and collectively for all chemicals and all clusters. Results show statistically significant differences between chemical concentrations before and after the calculated oil exposure dates (p < 0.04 for each of the 10 chemicals within the identified clusters). When aggregating all chemical measures collectively across all clusters, chemical concentrations were lower before oil exposure in comparison to after (p < 0.0001). Sandy coastlines exhibited lower chemical concentrations relative to muddy coastlines (p < 0.0001). Overall, the method developed is a useful first step for establishing baseline chemical concentrations and for assessing the impacts of disasters on sediment quality within different coastline types. Results may be also useful for assessing added ecological and human health risks associated with oil spills.
Показать больше [+] Меньше [-]Vertical migration of microplastics along soil profile under different crop root systems Полный текст
2021
Li, Haixiao | Lu, Xueqiang | Wang, Shiyu | Zheng, Boyang | Xu, Yan
Microplastics are highly accumulated in soils and supposed to migrate vertically due to water infiltration, fauna activities, and root growth. In this study, the vertical migration of microplastics along soil profile under three crop roots (corn, soybean, and ryegrass) was analyzed by a laboratory-scale incubation experiment. When microplastics were initially distributed in the surface layer, crop roots showed little effects on the vertical migration of microplastics. But in terms of homogenous microplastic distribution along soil profile, corn roots could contribute to the upward movement of microplastics in the middle layers (7–12 cm). It could be related to more pores and fissures created by primary and secondary corn roots and buoyancy effects once the pores and fissures were filled with water. Additionally, a significant positive correlation between microplastic numbers and tertiary roots of ryegrass has been observed and indicated the microplastic retention ability of fine crop roots. According to the results, in contrast to the downward microplastic migration caused by water infiltration and soil fauna activities, crop roots tended to move microplastics upwards or maintain them in soil layers.
Показать больше [+] Меньше [-]The role of respiratory droplet physicochemistry in limiting and promoting the airborne transmission of human coronaviruses: A critical review Полный текст
2021
Niazi, Sadegh | Groth, Robert | Spann, Kirsten | Johnson, Graham R.
Whether virulent human pathogenic coronaviruses (SARS-CoV, MERS-CoV, SARS-CoV-2) are effectively transmitted by aerosols remains contentious. Transmission modes of the novel coronavirus have become a hot topic of research with the importance of airborne transmission controversial due to the many factors that can influence virus transmission. Airborne transmission is an accepted potential route for the spread of some viral infections (measles, chickenpox); however, aerosol features and infectious inoculum vary from one respiratory virus to another. Infectious virus-laden aerosols can be produced by natural human respiratory activities, and their features are vital determinants for virus carriage and transmission. Physicochemical characteristics of infectious respiratory aerosols can influence the efficiency of virus transmission by droplets. This critical review identifies studies reporting instances of infected patients producing airborne human pathogenic coronaviruses, and evidence for the role of physical/chemical characteristics of human-generated droplets in altering embedded viruses’ viability. We also review studies evaluating these viruses in the air, field studies and available evidence about seasonality patterns. Ultimately the literature suggests that a proportion of virulent human coronaviruses can plausibly be transmitted via the air, even though this might vary in different conditions. Evidence exists for respirable-sized airborne droplet nuclei containing viral RNA, although this does not necessarily imply that the virus is transmittable, capable of replicating in a recipient host, or that inoculum is sufficient to initiate infection. However, evidence suggests that coronaviruses can survive in simulated droplet nuclei for a significant time (>24 h). Nevertheless, laboratory nebulized virus-laden aerosols might not accurately model the complexity of human carrier aerosols in studying airborne viral transport. In summary, there is disagreement on whether wild coronaviruses can be transmitted via an airborne path and display seasonal patterns. Further studies are therefore required to provide supporting evidence for the role of airborne transmission and assumed mechanisms underlying seasonality.
Показать больше [+] Меньше [-]Occurrence, influencing factors, toxicity, regulations, and abatement approaches for disinfection by-products in chlorinated drinking water: A comprehensive review Полный текст
2021
Kali, Sundas | K̲h̲ān, Marīnah | Ghaffar, Muhammad Sheraz | Rasheed, Sajida | Waseem, Amir | Iqbal, Muhammad Mazhar | Bilal khan Niazi, Muhammad | Zafar, Mazhar Iqbal
Disinfection is considered as a vital step to ensure the supply of clean and safe drinking water. Various approaches are adopted for this purpose; however, chlorination is highly preferred all over the world. This method is opted owing to its several advantages. However, it leads to the formation of certain by-products. These chlorination disinfection by-products (DBPs) are genotoxic, carcinogenic and mutagenic. Still chlorination is being practiced worldwide. Present review gives insights into the occurrence, toxicity and factors affecting the formation of regulated (THMs, HAAs) and emerging DBPs (N-DBPs, HKs, HAs and aromatic DBPs) found in drinking water. Furthermore, remediation techniques used to control DBPs have also been summarized here. Key findings are: (i) concentration of regulated DBPs surpassed the permissible limit in most of the regions, (ii) high chlorine dose, high NOM, more reaction time (up to 3 h) and high temperature (up to 30 °C) enhance the formation of THMs and HAAs, (iii) high pH favors the formation of THMs while low pH is suitable of the formation of HAAs, (iv) high NOM, low temperature, low chlorine dose and moderate pH favors the formation of unstable DBPs (N-DBPs, HKs and HAs), (v) DBPs are toxic not only for humans but for aquatic fauna as well, (vi) membrane technologies, enhanced coagulation and AOPs remove NOM, (vii) adsorption, air stripping and other physical and chemical methods are post-formation approaches (viii) step-wise chlorination is assumed to be an efficient method to reduce DBPs formation without any treatment. Toxicity data revealed that N-DBPs are found to be more toxic than C-DBPs and aromatic DBPs than aliphatic DBPs. In majority of the studies, merely THMs and HAAs have been studied and USEPA has regulated just these two groups. Future studies should focus on emerging DBPs and provide information regarding their regulation.
Показать больше [+] Меньше [-]Effects of polystyrene nanoplastics on extracellular polymeric substance composition of activated sludge: The role of surface functional groups Полный текст
2021
Qian, Jin | He, Xixian | Wang, Peifang | Xu, Bin | Li, Kun | Lu, Bianhe | Jin, Wen | Tang, Sijing
Here we investigated the acute effects (12 h exposure) of three polystyrene nanoplastics (PS NPs, including PS, PS−COOH and PS−NH₂) on extracellular polymeric substance (EPS) composition of activated sludge. Three PS NPs exhibited the significant inhibition in total EPS and protein (PRO) production. The functional groups involved in the interactions between PS NPs and EPS were C-(C, H), and those between PS-NH₂ NPs and EPS were CO and O–C–O. In addition, the dewaterability of activated sludge were optimized by three PS NPs, especially PS-NH₂ NPs. Three PS NPs caused nonnegligible cellular oxidative stress and cell membrane damage in activated sludge (PS NPs exposure concentration: 100 mg/L). Among them, the cell membrane damage caused by PS-NH₂ was the most significant. Overall, the degree of influence on EPS and cytotoxicity of activated sludge varies with the surface functional groups of PS NPs.
Показать больше [+] Меньше [-]Sorption of tetracycline onto hexabromocyclododecane/polystyrene composite and polystyrene microplastics: Statistical physics models, influencing factors, and interaction mechanisms Полный текст
2021
Lin, Lüjian | Tang, Shuai | Wang, Xuesong | Sun, Xuan | Liu, Ying
Microplastics (MPs) are becoming a major concern due to their great potential to sorb and transport pollutants in the aquatic environment; hexabromocyclododecane (HBCD) is a common chemical additive in polystyrene (PS) MPs. However, the underlying mechanisms for the interaction of tetracycline (TC) onto HBCD-PS composites MPs (HBCD-PS MPs) are still not well documented. Our findings showed that the addition of HBCD resulted in a relatively higher hydrophobicity of PS MPs, and significantly enhanced the sorption ability of HBCD-PS MPs for TC. The kinetic models suggested that the sorption of TC onto PS and HBCD-PS MPs were mainly controlled by film diffusion and intra-particle diffusion, respectively. The statistical physics models were used to elucidate the sorption of TC onto PS and HBCD-PS MPs was associated with the formation of the monolayer, and the results indicated the TC was sorbed onto the two MPs by both multi-molecular and non-parallel processes. The TC sorption was solution pH-dependent while the effect of NaCl content on TC sorption was negligible. The presence of Cu(Ⅱ), Pb(Ⅱ), Cd(Ⅱ), and Zn(Ⅱ) ions had different influences on the TC sorption onto both the MPs. Overall, various mechanisms including π-π and hydrophobic interactions jointly regulated the sorption of TC onto both the MPs. Our results provided new insights into the sorption behavior and interaction mechanisms of TC onto both the MPs and highlighted that the addition of HBCD likely increased the enrichment capacity of MPs for pollutants in the environment.
Показать больше [+] Меньше [-]Organophosphate esters in surface soils from a heavily urbanized region of Eastern China: Occurrence, distribution, and ecological risk assessment Полный текст
2021
Tang, Jianfeng | Sun, Jing | Ke, Ziyan | Yin, Hongling | Yang, Lei | Yen, Haw | Li, Xinhu | Xu, Yaoyang
Organophosphate esters (OPEs) pose increasing concerns for their widespread distribution in soil environments and potential threat to human health. In this study, we investigated the occurrence and associated risks of seven OPEs in surface soils and the potential influence of human activities on soil OPE contamination in a heavily urbanized region of the Yangtze River Delta in Eastern China. All target OPEs were detected in the soil samples (100% of samples) reflecting their widespread distribution in the study region. The total OPE concentration (the sum of the seven OPEs) ranged from 162.7 to 986.0 ng/g on a dry weight basis, with a mean value of 469.3 ± 178.6 ng/g. Tris (2-butoxyethyl) phosphate was the main compound, accounting for 67–78% of the total OPE concentration. Ecological risk assessment showed that tris(2-chloroisopropyl) phosphate, tris(2,3-dichloropropyl) phosphate, tris(2-butoxyethyl) phosphate, and tris(2-ethylhexyl) phosphate posed a medium potential risk to terrestrial biota (0.1 < risk quotient <1). The human exposure estimation showed insignificant risks to local population. Redundancy analysis revealed that the individual and total OPE contaminations were positively correlated with human activity parameters. The total OPE concentrations were positively correlated to population density (R² = 0.38, P < 0.001), and urban land use percentage (R² = 0.39, P < 0.001), while negatively correlated to forest land use percentage (R² = 0.59, P < 0.001), suggesting a significant contribution of human disturbance to OPE pollution. These results can facilitate OPE contamination control and promote sustainable soil management in urbanized and industrialized regions.
Показать больше [+] Меньше [-]