Уточнить поиск
Результаты 1781-1790 из 62,595
Soil and river contamination patterns of chlordecone in a tropical volcanic catchment in the French West Indies (Guadeloupe) Полный текст
2016
Crabit A. | Cattan P. | Colin F. | Voltz M.
Soil and river contamination patterns of chlordecone in a tropical volcanic catchment in the French West Indies (Guadeloupe) Полный текст
2016
Crabit A. | Cattan P. | Colin F. | Voltz M.
The aim of this study was to identify primary flow paths involved in the chlordecone (CLD) river contamination and quantify the CLD fluxes to assess CLD pollution levels and duration according to a typical catchment of the banana cropping area in the French Indies (Guadeloupe): the Pérou Catchment (12 km2) characterized by heavy rainfall (5686 mm year?1). Three sub-catchments (SC1, SC2 and SC3) were studied during the hydrological year 2009–2010: a pedological survey combined with a spatialized hydrochemical approach was conducted. The average soil concentration is higher in the Pérou Catchment (3400 ?g kg?1) than in the entire banana cropping area in Guadeloupe (2100 ?g kg?1). The results showed that CLD stocks in soils vary largely among soil types and farming systems: the weakest stocks are located upstream in SC1 (5 kg ha?1), where a majority of the area is non-cultivated; medium stocks are located in Nitisols downstream in SC3 (9 kg ha?1); and the greatest stocks are observed in SC2 on Andosols (12 kg ha?1) characterized by large farms. The annual water balance and the hydro-chemical analysis revealed that the three sub-catchments exhibited different behaviors. Pérou River contamination was high during low flows, which highlighted that contamination primarily originated from groundwater contributions. The results showed that only a small part of the catchment (SC2), contributing little to the water flow, comprises a major CLD contribution, which is in agreement with the highly contaminated andosol soils observed there. Another significant result considers that at least 50 years would be required to export the totality of the actual CLD soil stocks retained in the topsoil layer. The actual time for soil remediation will however be much longer considering (i) the necessary time for the chlordecone to percolate and be stored in the shallow aquifers and (ii) its travel time to reach the river. (Résumé d'auteur)
Показать больше [+] Меньше [-]Soil and river contamination patterns of chlordecone in a tropical volcanic catchment in the French West Indies (Guadeloupe) Полный текст
2016
Crabit, Armand | Cattan, Philippe | Colin, François | Voltz, Marc | Laboratoire d'étude des Interactions Sol - Agrosystème - Hydrosystème (UMR LISAH) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Fonctionnement écologique et gestion durable des agrosystèmes bananiers et ananas (UR GECO) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
The aim of this study was to identify primary flow paths involved in the chlordecone (CLD) river contamination and quantify the CLD fluxes to assess CLD pollution levels and duration according to a typical catchment of the banana cropping area in the French Indies (Guadeloupe): the Perou Catchment (12 km(2)) characterized by heavy rainfall (5686 mm year(-1)). Three sub-catchments (SC1, SC2 and SC3) were studied during the hydrological year 2009-2010: a pedological survey combined with a spatialized hydrochemical approach was conducted. The average soil concentration is higher in the Perou Catchment (3400 mu g kg(-1)) than in the entire banana cropping area in Guadeloupe (2100 mu g kg(-1)). The results showed that CLD stocks in soils vary largely among soil types and farming systems: the weakest stocks are located upstream in SC1 (5 kg ha(-1)), where a majority of the area is non-cultivated; medium stocks are located in Nitisols downstream in SC3 (9 kg ha(-1)); and the greatest stocks are observed in SC2 on Andosols (12 kg ha(-1)) characterized by large farms. The annual water balance and the hydro-chemical analysis revealed that the three sub-catchments exhibited different behaviors. Perou River contamination was high during low flows, which highlighted that contamination primarily originated from groundwater contributions. The results showed that only a small part of the catchment (SC2), contributing little to the water flow, comprises a major CLD contribution, which is in agreement with the highly contaminated andosol soils observed there. Another significant result considers that at least 50 years would be required to export the totality of the actual CLD soil stocks retained in the topsoil layer. The actual time for soil remediation will however be much longer considering (i) the necessary time for the chlordecone to percolate and be stored in the shallow aquifers and (ii) its travel time to reach the river.rights reserved.
Показать больше [+] Меньше [-]Has the environmental movement help or hindered?.
1977
Delanay L.
Agricultural return flows, and fish and wildlife resources: In the Imperial Valley they interact ironically [Irrigation, California].
1977
Herrgesell P.L.
Activated sludge control using the process control index.
1978
Estus W.N.
Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution Полный текст
2014
Clostre F. | Lesueur Jannoyer M. | Achard R. | Letourmy P. | Cabidoche Y.M. | Cattan P.
Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution Полный текст
2014
Clostre F. | Lesueur Jannoyer M. | Achard R. | Letourmy P. | Cabidoche Y.M. | Cattan P.
When field pollution is heterogeneous due to localized pesticide application, as is the case of chlordecone (CLD), the mean level of pollution is difficult to assess. Our objective was to design a decision support tool to optimize soil sampling. We analyzed the CLD heterogeneity of soil content at 0-30- and 30-60-cm depth. This was done within and between nine plots (0.4 to 1.8 ha) on andosol and ferralsol. We determined that 20 pooled subsamples per plot were a satisfactory compromise with respect to both cost and accuracy. Globally, CLD content was greater for andosols and the upper soil horizon (0-30 cm). Soil organic carbon cannot account for CLD intra-field variability. Cropping systems and tillage practices influence the CLD content and distribution; that is CLD pollution was higher under intensive banana cropping systems and, while upper soil horizon was more polluted than the lower one with shallow tillage (<40 cm), deeper tillage led to a homogenization and a dilution of the pollution in the soil profile. The decision tool we proposed compiles and organizes these results to better assess CLD soil pollution in terms of sampling depth, distance, and unit at field scale. It accounts for sampling objectives, farming practices (cropping system, tillage), type of soil, and topographical characteristics (slope) to design a relevant sampling plan. This decision support tool is also adaptable to other types of heterogeneous agricultural pollution at field level. (Résumé d'auteur)
Показать больше [+] Меньше [-]Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution Полный текст
2014
Clostre, Florence | Lesueur Jannoyer, Magalie | Achard, Raphaël | Letourmy, Philippe | Cabidoche, Yves-Marie | Cattan, Philippe | Fonctionnement agroécologique et performances des systèmes de cultures horticoles (UPR HORTSYS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Pôle de Recherche Agro-Environnementale de la Martinique ; Partenaires INRAE | Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | Agrosystèmes tropicaux (ASTRO) ; Institut National de la Recherche Agronomique (INRA) | Conseil Régional de la Martinique et Ministère des Outre-Mer (France)
The online version of this article (doi:10.1007/s11356-013-2095-x) contains supplementary material, which is available to authorized users. | International audience | When field pollution is heterogeneous due to localized pesticide application, as is the case of chlordecone (CLD), the mean level of pollution is difficult to assess. Our objective was to design a decision support tool to optimize soil sampling. We analyzed the CLD heterogeneity of soil content at 0-30- and 30-60-cm depth. This was done within and between nine plots (0.4 to 1.8 ha) on andosol and ferralsol. We determined that 20 pooled subsamples per plot were a satisfactory compromise with respect to both cost and accuracy. Globally, CLD content was greater for andosols and the upper soil horizon (0-30 cm). Soil organic carbon cannot account for CLD intra-field variability. Cropping systems and tillage practices influence the CLD content and distribution; that is CLD pollution was higher under intensive banana cropping systems and, while upper soil horizon was more polluted than the lower one with shallow tillage (< 40 cm), deeper tillage led to a homogenization and a dilution of the pollution in the soil profile. The decision tool we proposed compiles and organizes these results to better assess CLD soil pollution in terms of sampling depth, distance, and unit at field scale. It accounts for sampling objectives, farming practices (cropping system, tillage), type of soil, and topographical characteristics (slope) to design a relevant sampling plan. This decision support tool is also adaptable to other types of heterogeneous agricultural pollution at field level.
Показать больше [+] Меньше [-]Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution Полный текст
2014
Clostre, Florence | Lesueur Jannoyer, Magalie | Achard, Raphaël | Letourmy, Philippe | Cabidoche, Yves-Marie | Cattan, Philippe
When field pollution is heterogeneous due to localized pesticide application, as is the case of chlordecone (CLD), the mean level of pollution is difficult to assess. Our objective was to design a decision support tool to optimize soil sampling. We analyzed the CLD heterogeneity of soil content at 0–30- and 30–60-cm depth. This was done within and between nine plots (0.4 to 1.8 ha) on andosol and ferralsol. We determined that 20 pooled subsamples per plot were a satisfactory compromise with respect to both cost and accuracy. Globally, CLD content was greater for andosols and the upper soil horizon (0–30 cm). Soil organic carbon cannot account for CLD intra-field variability. Cropping systems and tillage practices influence the CLD content and distribution; that is CLD pollution was higher under intensive banana cropping systems and, while upper soil horizon was more polluted than the lower one with shallow tillage (<40 cm), deeper tillage led to a homogenization and a dilution of the pollution in the soil profile. The decision tool we proposed compiles and organizes these results to better assess CLD soil pollution in terms of sampling depth, distance, and unit at field scale. It accounts for sampling objectives, farming practices (cropping system, tillage), type of soil, and topographical characteristics (slope) to design a relevant sampling plan. This decision support tool is also adaptable to other types of heterogeneous agricultural pollution at field level.
Показать больше [+] Меньше [-]Evidence of sulfur-bound reduced copper in bamboo exposed to high silicon and copper concentrations Полный текст
2014
Collin B. | Doelsch E. | Keller C. | Cazevieille P. | Tella M. | Chaurand P. | Panfili F. | Hazemann J.L. | Meunier J.D.
Evidence of sulfur-bound reduced copper in bamboo exposed to high silicon and copper concentrations Полный текст
2014
Collin B. | Doelsch E. | Keller C. | Cazevieille P. | Tella M. | Chaurand P. | Panfili F. | Hazemann J.L. | Meunier J.D.
We examined copper (Cu) absorption, distribution and toxicity and the role of a silicon (Si) supplementation in the bamboo Phyllostachys fastuosa. Bamboos were maintained in hydroponics for 4 months and submitted to two different Cu (1.5 and 100 mm Cu2þ) and Si (0 and 1.1 mM) concentrations. Cu and Si partitioning and Cu speciation were investigated by chemical analysis, microscopic and spectroscopic techniques. Copper was present as Cu(I) and Cu(II) depending on plant parts. Bamboo mainly coped with high Cu exposure by: (i) high Cu sequestration in the root (ii) Cu(II) binding to amino and carboxyl ligands in roots, and (iii) Cu(I) complexation with both organic and inorganic sulfur ligands in stems and leaves. Silicon supplementation decreased the visible damage induced by high Cu exposure and modified Cu speciation in the leaves where a higher proportion of Cu was present as inorganic Cu(I)S compounds, which may be less toxic. (Résumé d'auteur)
Показать больше [+] Меньше [-]Evidence of sulfur-bound reduced copper in bamboo exposed to high silicon and copper concentrations Полный текст
2014
Collin, Blanche | Doelsch, Emmanuel | Keller, Catherine | Cazevieille, Patrick | Tella, Marie | Chaurand, Perrine | Panfili, Frédéric | Hazemann, Jean-Louis | Meunier, Jean-Dominique
We examined copper (Cu) absorption, distribution and toxicity and the role of a silicon (Si) supplementation in the bamboo Phyllostachys fastuosa. Bamboos were maintained in hydroponics for 4 months and submitted to two different Cu (1.5 and 100 μm Cu2+) and Si (0 and 1.1 mM) concentrations. Cu and Si partitioning and Cu speciation were investigated by chemical analysis, microscopic and spectroscopic techniques. Copper was present as Cu(I) and Cu(II) depending on plant parts. Bamboo mainly coped with high Cu exposure by: (i) high Cu sequestration in the root (ii) Cu(II) binding to amino and carboxyl ligands in roots, and (iii) Cu(I) complexation with both organic and inorganic sulfur ligands in stems and leaves. Silicon supplementation decreased the visible damage induced by high Cu exposure and modified Cu speciation in the leaves where a higher proportion of Cu was present as inorganic Cu(I)S compounds, which may be less toxic.
Показать больше [+] Меньше [-]Persistence of detectable insecticidal proteins from #Bacillus thuringiensis# (Cry) and toxicity after adsorption on contrasting soils Полный текст
2016
Hung T.P. | Truong L.V. | Binh N.D. | Frutos R. | Quiquampoix H. | Staunton S.
Persistence of detectable insecticidal proteins from #Bacillus thuringiensis# (Cry) and toxicity after adsorption on contrasting soils Полный текст
2016
Hung T.P. | Truong L.V. | Binh N.D. | Frutos R. | Quiquampoix H. | Staunton S.
Insecticidal Cry, or Bt, proteins are produced by the soil-endemic bacterium, Bacillus thuringiensis and some genetically modified crops. Their environmental fate depends on interactions with soil. Little is known about the toxicity of adsorbed proteins and the change in toxicity over time. We incubated Cry1Ac and Cry2A in contrasting soils subjected to different treatments to inhibit microbial activity. The toxin was chemically extracted and immunoassayed. Manduca sexta was the target insect for biotests. Extractable toxin decreased during incubation for up to four weeks. Toxicity of Cry1Ac was maintained in the adsorbed state, but lost after 2 weeks incubation at 25 °C. The decline in extractable protein and toxicity were much slower at 4 °C with no significant effect of soil sterilization. The major driving force for decline may be time-dependent fixation of adsorbed protein, leading to a decrease in the extraction yield in vitro, paralleled by decreasing solubilisation in the larval gut. (Résumé d'auteur)
Показать больше [+] Меньше [-]Persistence of detectable insecticidal proteins from Bacillus thuringiensis (Cry) and toxicity after adsorption on contrasting soils Полный текст
2016
Hung, T.P. | Truong, L.V. | Binh, N.D. | Frutos, R. | Quiquampoix, H. | Staunton, S.
Insecticidal Cry, or Bt, proteins are produced by the soil-endemic bacterium, Bacillus thuringiensis and some genetically modified crops. Their environmental fate depends on interactions with soil. Little is known about the toxicity of adsorbed proteins and the change in toxicity over time. We incubated Cry1Ac and Cry2A in contrasting soils subjected to different treatments to inhibit microbial activity. The toxin was chemically extracted and immunoassayed. Manduca sexta was the target insect for biotests. Extractable toxin decreased during incubation for up to four weeks. Toxicity of Cry1Ac was maintained in the adsorbed state, but lost after 2 weeks incubation at 25 °C. The decline in extractable protein and toxicity were much slower at 4 °C with no significant effect of soil sterilization. The major driving force for decline may be time-dependent fixation of adsorbed protein, leading to a decrease in the extraction yield in vitro, paralleled by decreasing solubilisation in the larval gut.
Показать больше [+] Меньше [-]Field surveys of vegetation during a period of rising electric power generation in the Ohio River Valley [Sulfur dioxide].
1984
Jacobson J.S. | Showman R.E.
Diesel exhaust odor and irritants: a review [Light-duty vehicles, air pollution].
1983
Cernansky N.P.
Factors affecting the variability of summertime sulfate in a rural area using principal component analysis [Air pollution].
1982
Lioy P.J. | Mallon R.P. | Lippmann M. | Knelp T.J. | Samson P.J.