Уточнить поиск
Результаты 1781-1790 из 8,010
Water-washed hydrochar in rice paddy soil reduces N2O and CH4 emissions: A whole growth period investigation Полный текст
2021
Chen, Danyan | Zhou, Yibo | Xu, Cong | Lu, Xinyu | Liu, Yang | Yu, Shan | Feng, Yanfang
Hydrochar (HC), an environment-friendly material, enhances soil carbon sequestration and mitigate greenhouse gases (GHGs) emissions in croplands. In this study, the water-washed HC (WW-HC) was applied to paddy soil to investigate effects on nitrous oxide (N₂O) and methane (CH₄) emissions during rice growth period. Four treatments, namely control (without N fertilizer and WW-HC), N fertilizer (WW-HC00), N fertilizer with 0.5 wt% WW-HC (WW-HC05) and N fertilizer with 1.5 wt% WW-HC (WW-HC15), were established. Results showed the WW-HC addition reduced N₂O and CH₄ emissions, global warming potential (GWP) and greenhouse gas intensity (GHGI) during the growing season. Moreover, the WW-HC application reduced N₂O cumulative emission (P < 0.05) (by 28.6% and 23.8% for WW-HC05 and WW-HC15, respectively). It was mainly due to the reduced ratio of (nirK + nirS) to nosZ under WW-HC15 (P < 0.05). Compared with WW-HC00, the WW-HC05 reduced CH₄ cumulative emissions by 14.8%, while the WW-HC15 increased by 9.7%. This might be ascribed to the significantly reduced expression of the methanogenic mcrA gene and ratio of mcrA to pmoA by WW-HC (P < 0.05). The WW-HC05 amendment decreased GWP and GHGI by 18.6% and 32.5%, respectively. Furthermore, the WW-HC application greatly improved nitrogen use efficiency by 116–145% compared with the control. Our study indicates the WW-HC application is a promising GHGs mitigation practice in paddy fields.
Показать больше [+] Меньше [-]Effects of biochar on catalysis treatment of 4-nonylphenol in estuarine sediment and associated microbial community structure Полный текст
2021
Hung, Chang-Mao | Huang, Jinbao | Chen, Chiu-Wen | Hsieh, Shu-Ling | Dong, Cheng-Di
The effect of pyrolysis temperature on the generation of polycyclic aromatic hydrocarbons (PAHs) in sewage sludge biochar (SSB) and the removal of hazardous chemicals from esturine sediments by SSB and sodium percarbonate (SPC), exemplified by 4-nonylphenol (4-NP) were studied. SSB synthesized at 500 °C (SSB500) achieved the highest 4-NP degradation efficiency of 73%, at pH₀ 9.0 in 12 h of reaction time. The enhanced 4-NP degradation was attributed to the SSB500 activation activation of SPC that produced sufficient •OH and CO₃⁻• due to electron-transfer interaction on the Fe–Mn redox pairs. The microbial community diversity and composition of the treated sediment were compared using high-throughput sequencing. Results showed SSB/SPC treatment increased the microbial diversity and richness in the sediments. Proteobacteria were the keystone phylum, while Thioalkalispira genera were responsible for 4-NP degradation in the SSB/SPC treatment. Over all, results revealed the change in the bacterial community during the environmental applications of SSB, which provided essential information for better understanding of the monitoring and improvement of sustainable sediment ecosystems.
Показать больше [+] Меньше [-]Characteristics and unique sources of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in PM2.5 at a highland background site in northwestern China☆ Полный текст
2021
Zhang, Lulu | Yang, Lu | Bi, Jianrong | Liu, Yuzhi | Toriba, Akira | Hayakawa, Kazuichi | Nagao, Seiya | Tang, Ning
Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) in PM₂.₅ were first observed at a background site (Yuzhong site: YZ site) in the northwestern highlands of China in five seasonal campaigns. Compared with major northwestern cities, PAHs and NPAHs at the YZ site were at a lower level but showed consistent seasonal differences. The PAH and NPAH concentrations peaked in the winter campaigns, which were 36.11 ± 6.54 ng/m³ and 418.11 ± 123.55 pg/m³, respectively, in winter campaign 1 and 28.97 ± 10.07 ng/m³ and 226.89 ± 133.54 pg/m³, respectively, in winter campaign 2. These values were approximately a dozen times larger those in other campaigns. The diagnostic ratios indicate that vehicle emissions were the primary source of the PAHs throughout the five campaigns, and coal and biomass combustion also contributed during the winter, summer, and fall campaigns. Among NPAHs, 2-nitrofluoranthene and 2-nitropyrene were generated through OH radical-initiated reactions during atmospheric transport, while 1-nitropyrene came from combustion sources. There is an observation worth pondering, which is that the ratio between pyrene and fluoranthene increased abnormally in the spring and fall campaigns, which is presumably caused by the burning of Tibetan barley straw in the northwestern highlands. The backward trajectories over Tibetan areas in Qinghai and southwestern Gansu are consistent with this hypothesis. In addition, this study reported for the first time that the burning of Tibetan barley straw has become a seasonal contributor to air pollution in northwestern China and is participating in the atmospheric transport of air pollutants driven by the monsoon in East Asia, which urgently requires further research.
Показать больше [+] Меньше [-]In vitro renal toxicity evaluation of copper-based metal–organic framework HKUST-1 on human embryonic kidney cells Полный текст
2021
Chen, Yi-Chun | Andrew Lin, Kun-Yi | Chen, Ku-Fan | Jiang, Xin-Yu | Lin, Chia-Hua
HKUST-1 is currently studied for a very diverse range of applications. Despite its exciting potential, significant concerns remain regarding the safety of HKUST-1. Therefore, human embryonic kidney 293 (HEK293) cells were used to verify the renal toxicity of HKUST-1. In this study, HKUST-1 induced concentration-dependent cytotoxic effects in HEK293 cells. The depolarization of mitochondrial membrane potential and formation of apoptotic bodies and autophagic vesicles were observed in HKUST-1–treated HEK293 cells. Oxidative (oxidative stress and haem oxygenase-1 activation) and inflammatory responses (NF-κB and NLRP3 activation) in HEK293 cells were induced by HKUST-1 exposure. In addition, the observed reduction in NAD(P)H levels in HKUST-1–treated HEK293 cells may be attributable to PARP-1 activation following DNA single- and double-strand breaks. The HKUST-1–induced depletion of zonula occludens proteins in HEK293 cells might lead to altered renal barrier integrity. The variations of α1-antitrypsin, oxidised α1-antitrypsin and NLRP3 protein expression in HEK293 cells suggested that HKUST-1 increases the risk of chronic kidney diseases. However, most of these adverse effects were significantly induced only by high HKUST-1 concentration (100 μg/mL), which do not reflect the actual exposure. Thus, the toxic risk of HKUST-1 appears to be negligible.
Показать больше [+] Меньше [-]Adsorption, uptake and toxicity of micro- and nanoplastics: Effects on terrestrial plants and aquatic macrophytes Полный текст
2021
Mateos-Cárdenas, Alicia | van Pelt, Frank N.A.M. | O’Halloran, John | Jansen, Marcel A.K.
Plastic pollution is a new, pressing, environmental topic. Microplastics are considered contaminants of emerging concern and, consequently, microplastic research has grown exponentially in the last decade. Here, current knowledge regarding the impacts of micro- and nanoplastics on terrestrial plants and aquatic macrophytes is discussed, with a special focus on adsorption, uptake and toxicological effects. Our review reveals that a range of plants and macrophytes can adsorb or internalise plastic particles. Both processes depend on particle characteristics such as size and charge, as well as plant features including a sticky or hydrophobic surface layer. This finding is of concern given that plants and aquatic macrophytes are at the bottom of food webs and are a crucial component of the human diet. Therefore, there is a critical need for improved understanding of adsorption, uptake and impacts of micro- and nanoplastics, and the consequences thereof for trophic transfer, food safety and security. Also, a range of stress responses have been observed for many plant and macrophyte species after both short and long-term exposures to plastic particles. Given that some plastic particles can affect plant productivity, we surmise that plastic particles may potentially impact ecosystem productivity and function. Here we present a synthesis and a critical evaluation of the state of knowledge of micro- and nanoplastics and plants and macrophytes, identifying key questions for future research.
Показать больше [+] Меньше [-]Associations between short-term exposure to PM2.5 and stroke incidence and mortality in China: A case-crossover study and estimation of the burden Полный текст
2021
Ban, Jie | Wang, Qing | Ma, Runmei | Zhang, Yingjian | Shi, Wangying | Zhang, Yayi | Chen, Chen | Sun, Qinghua | Wang, Yanwen | Guo, Xinbiao | Li, Tiantian
Stroke and fine particulate matter (PM₂.₅) are two important public health concerns worldwide. Although numerous studies have reported the associations between PM₂.₅ and stroke, scientific evidence in China is incomplete, particularly the effect of PM₂.₅ on the acute incidence and national acute health burdens of stroke attributed to PM₂.₅ pollution. This study identified about 131,947 registered patients and 23,018 deaths due to stroke in 10 counties located in various regions from 2013 to 2017. Using a time-stratified case-crossover design, this study evaluated the associations between short-term exposure to PM₂.₅ and the risks of acute incidence and mortality for different types of stroke on the same spatiotemporal scale. With a 10 μg/m³ increase in the PM₂.₅ concentration, the acute incidence risk increased by 0.37% (0.15%, 0.60%) for stroke, 0.46% (0.21%, 0.72%) for ischemic stroke, and −0.13% (−0.73%, 0.48%) for hemorrhagic stroke. The corresponding values for the mortality risk were 0.71% (0.08%, 1.33%), 1.09% (0.05%, 2.14%), and 0.43% (−0.44%, 1.31%) for stroke, ischemic stroke and hemorrhagic stroke, respectively. Compared with the other groups, females and patients aged over 64 years presented higher incidence and mortality risks, while the group aged >75 years may exhibit a greater risk of mortality. Based on the estimated effects, we evaluated 43,300 excess deaths and 48,800 acute incidences attributed to short-term PM₂.₅ exposure across China in 2015. This study provided robust estimates of PM₂.₅-induced stroke incidence and mortality risks, and susceptible populations were identified. Excess mortality and morbidity attributed to short-term PM₂.₅ exposure indicate the necessity to implement health care and prevention strategies, as well as medical resource allocation for noncommunicable diseases in regions with high levels of air pollution.
Показать больше [+] Меньше [-]Microplastics and microfibers in urban runoff from a suburban catchment of Greater Paris Полный текст
2021
Treilles, Robin | Gasperi, Johnny | Gallard, Anaïs | Saad, Mohamed | Dris, Rachid | Partibane, Chandirane | Breton, Jérôme | Tassin, Bruno
Microplastics (MPs) and microfibers (MFs) in stormwater have been poorly investigated. Data on their intra and inter rain events variability over time are still sparse. For the first time, the variability of microlitter concentrations in stormwater has been studied. MF and MP concentrations were investigated in stormwater runoff at the outlet of the suburban catchment at Sucy-en-Brie (a suburb of Paris, France), during four rain events. Median MF and MP concentrations were 1.9 and 29 items/L, with an interquartile range of 2.3 and 36 items/L, respectively (N = 18). A different pattern was observed between MFs and MPs. While no relationship or trends were observed for MFs, the highest MP concentrations were observed before the flow rate peak of the rain events. This could indicate a difference in the behaviour between MFs and MPs. We estimated the median MP mass concentration to be 56 μg/L with an interquartile range of 194 μg/L, whereas the mass concentration of macroplastics was estimated to be 31 μg/L with an interquartile range of 22 μg/L at the same sampling site, in a previous study. For this sampling site, MPs and macroplastics have the same order of magnitude. This study may have strong implications on microplastic assessment in urban waters.
Показать больше [+] Меньше [-]Technological advances for improving fungal cellulase production from fruit wastes for bioenergy application: A review Полный текст
2021
Srivastava, Neha | Srivastava, Manish | Alhazmi, Alaa | Kausar, Tahreem | Haque, Shafiul | Singh, Rajeev | Ramteke, Pramod W. | Mishra, Pradeep Kumar | Tuohy, Maria | Leitgeb, Maja | Gupta, Vijai Kumar
Fruit wastes can be imperative to elevate economical biomass to biofuels production process at pilot scale. Because of the renewable features, huge availability, having low lignin content organic nature and low cost; these wastes can be of much interest for cellulase enzyme production. This review provides recent advances on the fungal cellulase production using fruit wastes as a potential substrate. Also, the availability of fruit wastes, generation and processing data and their potential applications for cellulase enzyme production have been discussed. Several aspects, including cellulase and its function, solid-state fermentation, process parameters, microbial source, and the application of enzyme in biofuels industries have also been discussed. Further, emphasis has been made on various bottlenecks and feasible approaches such as use of nanomaterials, co-culture, molecular techniques, genetic engineering, and cost economy analysis to develop a low-cost based comprehensive technology for viable production of cellulase and its application in biofuels production technology.
Показать больше [+] Меньше [-]The effect of toxic components on metabolomic response of male SD rats exposed to fine particulate matter Полный текст
2021
Geng, Ningbo | Song, Xiaoyao | Cao, Rong | Luo, Yun | A, Mila | Cai, Zhengang | Yu, Kejie | Gao, Yuan | Ni, Yuwen | Zhang, Haijun | Chen, Jiping
PM₂.₅ pollution was associated with numerous adverse health effects. However, PM₂.₅ induced toxic effects and the relationships with toxic components remain largely unknown. To evaluate the metabolic toxicity of PM₂.₅ at environmentally relevant doses, investigate the seasonal variation of PM₂.₅ induced toxicity and the relationship with toxic components, a combination of general pathophysiological tests and metabolomics analysis was conducted in this study to explore the response of SD rats to PM₂.₅ exposure. The result of general toxicology analysis revealed unconspicuous toxicity of PM₂.₅ under environmental dose, but winter PM₂.₅ at high dose caused severe histopathological damage to lung. Metabolomic analysis highlighted significant metabolic disorder induced by PM₂.₅ even at environmentally relevant doses. Lipid metabolism and GSH metabolism were primarily influenced by PM₂.₅ exposure due to the high levels of heavy metals. In addition, high levels of organic compounds such as PAHs, PCBs and PCDD/Fs in winter PM₂.₅ bring multiple overlaps on the toxic pathways, resulting in larger pulmonary toxicity and metabolic toxicity in rats than summer.
Показать больше [+] Меньше [-]Subchronic exposure to concentrated ambient PM2.5 perturbs gut and lung microbiota as well as metabolic profiles in mice Полный текст
2021
Ran, Zihan | An, Yanpeng | Zhou, Ji | Yang, Jingmin | Zhang, Youyi | Yang, Jingcheng | Wang, Lei | Li, Xin | Lu, Daru | Zhong, Jiang | Song, Huaidong | Qin, Xingjun | Li, Rui
Exposure to ambient fine particular matter (PM2.5) are linked to an increased risk of metabolic disorders, leading to enhanced rate of many diseases, such as inflammatory bowel disease (IBD), cardiovascular diseases, and pulmonary diseases; nevertheless, the underlying mechanisms remain poorly understood. In this study, BALB/c mice were exposed to filtered air (FA) or concentrated ambient PM2.5 (CPM) for 2 months using a versatile aerosol concentration enrichment system(VACES). We found subchronic CPM exposure caused significant lung and intestinal damage, as well as systemic inflammatory reactions. In addition, serum and BALFs (bronchoalveolar lavage fluids) metabolites involved in many metabolic pathways in the CPM exposed mice were markedly disrupted upon PM2.5 exposure. Five metabolites (glutamate, glutamine, formate, pyruvate and lactate) with excellent discriminatory power (AUC = 1, p < 0.001) were identified to predict PM2.5 exposure related toxicities. Furthermore, subchronic exposure to CPM not only significantly decreased the richness and composition of the gut microbiota, but also the lung microbiota. Strong associations were found between several gut and lung bacterial flora changes and systemic metabolic abnormalities. Our study showed exposure to ambient PM2.5 not only caused dysbiosis in the gut and lung, but also significant systemic and local metabolic alterations. Alterations in gut and lung microbiota were strongly correlated with metabolic abnormalities. Our study suggests potential roles of gut and lung microbiota in PM2.5 caused metabolic disorders.
Показать больше [+] Меньше [-]