Уточнить поиск
Результаты 181-190 из 6,560
Ecotoxicity of polyethylene nanoplastics from the North Atlantic oceanic gyre on freshwater and marine organisms (microalgae and filter-feeding bivalves) Полный текст
2020
Baudrimont, Magalie | Arini, Adeline | Guégan, Claire | Venel, Zélie | Gigault, Julien | Pedrono, Boris | Prunier, Jonathan | Maurice, Laurence | ter Halle, Alexandra | Feurtet-Mazel, Agnès | Environnements et Paléoenvironnements OCéaniques (EPOC) ; École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Cordouan Technologies | Géosciences Rennes (GR) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Ecologie des forêts de Guyane (UMR ECOFOG) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-AgroParisTech-Université de Guyane (UG)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA) | Géosciences Environnement Toulouse (GET) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS) | Interactions moléculaires et réactivité chimique et photochimique (IMRCP) ; Institut de Chimie de Toulouse (ICT) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Fluides, Energie, Réacteurs, Matériaux et Transferts (FERMAT) ; Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | IMRCP - Systèmes Moléculaires Organisés et Développement Durable (IMRCP - SMODD) ; Interactions moléculaires et réactivité chimique et photochimique (IMRCP) ; Institut de Chimie de Toulouse (ICT) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Fluides, Energie, Réacteurs, Matériaux et Transferts (FERMAT) ; Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT) ; Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Fluides, Energie, Réacteurs, Matériaux et Transferts (FERMAT) ; Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | ANR-17-CE34-0008-05, Agence Nationale de la Recherche | ANR-17-CE34-0008,PEPSEA,Nanoparticules de plastiques dans l'environnement: source, impact et prédiction(2017)
International audience | Each year, 5 to 10 million tons of plastic waste is dumped in the oceans via freshwaters and accumulated in huge oceanic gyres. Under the effect of several abiotic factors, macro plastic wastes (or plastic wastes with macro sizes) are fractionated into microplastics (MP) and finally reach the nanometric size (nanoplastic NP). To reveal potential toxic impacts of these NPs, two microalgae, Scenedemus subspicatus (freshwater green algae), and Thalassiosira weissiflogii (marine diatom) were exposed for up to 48 h at 1, 10, 100, 1000, and 10,000 μg/L to reference polyethylene NPs (PER) or NPs made from polyethylene collected in the North Atlantic gyre (PEN, 7th continent expedition in 2015). Freshwater filter-feeding bivalves, Corbicula fluminea, were exposed to 1000 μg/L of PER and PEN for 48 h to study a possible modification of their filtration or digestion capacity. The results show that PER and PEN do not influence the cell growth of T. weissiflogii, but the PEN exposure causes growth inhibition of S. subspicatus for all exposure concentrations tested. This growth inhibition is enhanced for a higher concentration of PER or PEN (10,000 μg/L) in S. subspicatus. The marine diatom T. weissiflogii appears to be less impacted by plastic pollution than the green algae S. subspicatus for the exposure time. Exposure to NPs does not lead to any alteration of bivalve filtration; however, fecal and pseudo-fecal production increased after PEN exposure, suggesting the implementation of rejection mechanisms for inedible particles.
Показать больше [+] Меньше [-]Environmental performances of production and land application of sludge-based phosphate fertilizers | Performances environnementales de la production et de l'épandage de fertilisants phosphatés boue-sourcés - cas d'étude ACV Полный текст
2020
Pradel, Marilys | Lippi, M. | Daumer, M.L. | Aissani, Lynda | Université Clermont Auvergne [2017-2020] (UCA [2017-2020]) | Technologies et systèmes d'information pour les agrosystèmes (UR TSCF) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Optimisation des procédés en Agriculture, Agroalimentaire et Environnement (UR OPAALE) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | UNIVERSITE BRETAGNE LOIRE RENNES FRA ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
Environmental performances of production and land application of sludge-based phosphate fertilizers | Performances environnementales de la production et de l'épandage de fertilisants phosphatés boue-sourcés - cas d'étude ACV Полный текст
2020
Pradel, Marilys | Lippi, M. | Daumer, M.L. | Aissani, Lynda | Université Clermont Auvergne [2017-2020] (UCA [2017-2020]) | Technologies et systèmes d'information pour les agrosystèmes (UR TSCF) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Optimisation des procédés en Agriculture, Agroalimentaire et Environnement (UR OPAALE) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | UNIVERSITE BRETAGNE LOIRE RENNES FRA ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
[Departement_IRSTEA]Ecotechnologies [TR1_IRSTEA]INSPIRE [ADD1_IRSTEA]Équiper l'agriculture | International audience | Phosphorus (P) is a non-renewable resource extracted from phosphate rock to produce agricultural fertilizers. Since P is essential for life, it is important to preserve this resource and explore alternative sources of P to reduce its criticality. This study aimed to assess whether fertilizing with sludge-based phosphate fertilizers (SBPF) can be a suitable alternative to doing so with fertilizers produced from phosphate rock. Environmental impacts of production and land application of SBPF from four recovery processes were compared to those of two reference scenarios: triple super phosphate (TSP) and sewage sludge. To avoid bias when comparing scenarios, part of the environmental burden of wastewater treatment is allocated to sludge production. The CML-IA method was used to perform life cycle impact assessment. Results highlighted that production and land application of SBPF had higher environmental impacts than those of TSP due to the large amounts of energy and reactants needed to recover P, especially when sludge had a low P concentration. Certain environmental impacts of production and land application of sewage sludge were similar to those of SBPF. Sensitivity analysis conducted for cropping systems highlighted variability in potential application rates of sewage sludge or SBPF. Finally, because they contain lower contents of heavy metals than sewage sludge or TSP, SBPF are of great interest, but they require more mineral fertilizers to supplement their fertilization than sewage sludge. Thus, SBPF have advantages and disadvantages that need to be considered, since they may influence their use within fertilization practices.
Показать больше [+] Меньше [-]Environmental performances of production and land application of sludge-based phosphate fertilizers—a life cycle assessment case study Полный текст
2020
Pradel, Marilys | Lippi, Mathilde | Daumer, Marie-Line | Aissani, Lynda
Phosphorus (P) is a non-renewable resource extracted from phosphate rock to produce agricultural fertilizers. Since P is essential for life, it is important to preserve this resource and explore alternative sources of P to reduce its criticality. This study aimed to assess whether fertilizing with sludge-based phosphate fertilizers (SBPF) can be a suitable alternative to doing so with fertilizers produced from phosphate rock. Environmental impacts of production and land application of SBPF from four recovery processes were compared to those of two reference scenarios: triple super phosphate (TSP) and sewage sludge. To avoid bias when comparing scenarios, part of the environmental burden of wastewater treatment is allocated to sludge production. The CML-IA method was used to perform life cycle impact assessment. Results highlighted that production and land application of SBPF had higher environmental impacts than those of TSP due to the large amounts of energy and reactants needed to recover P, especially when sludge had a low P concentration. Certain environmental impacts of production and land application of sewage sludge were similar to those of SBPF. Sensitivity analysis conducted for cropping systems highlighted variability in potential application rates of sewage sludge or SBPF. Finally, because they contain lower contents of heavy metals than sewage sludge or TSP, SBPF are of great interest, but they require more mineral fertilizers to supplement their fertilization than sewage sludge. Thus, SBPF have advantages and disadvantages that need to be considered, since they may influence their use within fertilization practices.
Показать больше [+] Меньше [-]Impact of phenanthrene on primary metabolite profiling in root exudates and maize mucilage Полный текст
2020
Lapie, Clémentine | Sterckeman, Thibault | Paris, Cédric | Leglize, Pierre | Laboratoire Sols et Environnement (LSE) ; Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation (EFABA) ; Université de Lorraine (UL) | Laboratoire d'Ingénierie des Biomolécules (LIBio) ; Université de Lorraine (UL)
Impact of phenanthrene on primary metabolite profiling in root exudates and maize mucilage Полный текст
2020
Lapie, Clémentine | Sterckeman, Thibault | Paris, Cédric | Leglize, Pierre | Laboratoire Sols et Environnement (LSE) ; Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ecosystèmes Forestiers, Agroressources, Bioprocédés et Alimentation (EFABA) ; Université de Lorraine (UL) | Laboratoire d'Ingénierie des Biomolécules (LIBio) ; Université de Lorraine (UL)
International audience
Показать больше [+] Меньше [-]Impact of phenanthrene on primary metabolite profiling in root exudates and maize mucilage Полный текст
2020
Lapie, Clémentine | Sterckeman, Thibault | Paris, Cédric | Leglize, Pierre
This study was conducted to assess the impact of polycyclic aromatic hydrocarbon on the composition of rhizodeposits. Maize was submitted to increasing phenanthrene (PHE) concentrations in the substrate (0, 25, 50, and 100 mg PHE.kg⁻¹ of dry sand). After 6 weeks of cultivation, two types of rhizodeposit solution were collected. The first one, called rhizospheric sand extract, resulted from the extraction of root adhering sand in order to collect mucilage and associated compounds. The second one, the diffusate solution, was collected by the diffusion of exudates from roots soaked in water. The impact of phenanthrene on maize morphology and functioning was measured prior to the analysis of the main components of the rhizodeposit solutions, by measuring total carbon, protein, amino acid, and sugars as well as by determining about 40 compounds using GC-MS and LC-MS. As maize exposure to PHE increased, different trends were observed in the two rhizodeposit solutions. In the diffusate solution, we measured a global increase of metabolites exudation like carbohydrates, amino acids, and proteins except for some monoglycerides and organic acids which exudation decreased in the presence of PHE. In the rhizospheric sand extract, we witnessed a decrease in carbohydrates and amino acids secretion as well as in fatty and organic acids when plants were exposed to PHE. Many of the compounds measured, like organic acids, carbohydrates, amino acids, or fatty acids, could directly or indirectly drive PAHs availability in soils with particular consequences for their degradation.
Показать больше [+] Меньше [-]Barrage fishponds, a funnel effect for metal contaminants on headwater streams Полный текст
2020
Le Cor, François | Slaby, Sylvain | Gaillard, Juliette | Dauchy, Xavier | Feidt, Cyril | Banas, Damien | Unité de Recherches Animal et Fonctionnalités des Produits Animaux (URAFPA) ; Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Laboratoire d'hydrologie de Nancy (LHN) ; Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Rhin-MeuseWater Agency | Anses | SERVIPOND project - EcoServ metaprogramme of INRA
Barrage fishponds, a funnel effect for metal contaminants on headwater streams Полный текст
2020
Le Cor, François | Slaby, Sylvain | Gaillard, Juliette | Dauchy, Xavier | Feidt, Cyril | Banas, Damien | Unité de Recherches Animal et Fonctionnalités des Produits Animaux (URAFPA) ; Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Laboratoire d'hydrologie de Nancy (LHN) ; Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Rhin-MeuseWater Agency | Anses | SERVIPOND project - EcoServ metaprogramme of INRA
International audience | Fishponds are man-made shallow water bodies that are still little studied because of their small size. They represent high value ecosystems, both environmentally (biodiversity hotspot) and economically (fish production). They can have a high place on the hydrographic network, so their influence on water quality is of first importance for rivers and water bodies located downstream and monitored under the Water Framework Directive. These small water bodies can be a source of contaminants during draining period or an efficient buffer for pesticides. We wanted to evaluate whether these ponds could also be a remediation tool against metals by following the annual evolution of upstream/downstream flows. Cadmium, copper, lead and zinc concentrations were quantified in the dissolved phase upstream and downstream of three ponds, each one having a specific agricultural environment (traditional or organic). Metal concentration was quantified in sediments and water. For the dissolved phase, the predictive non-effect concentration was often exceeded, suggesting an environmental risk. Results highlighted also greater quantity of metals at the downstream of the pond compared to the upstream, suggesting remobilization into the ponds or direct cross-sectional contributions from the watershed (e.g. runoff from crops) or even remobilization. Regarding sediments, minimal contamination was shown but a high mineralogical variability. No buffer effect of ponds, which could reduce the risk of acute or chronic toxicity, was detected.
Показать больше [+] Меньше [-]Barrage fishponds, a funnel effect for metal contaminants on headwater streams Полный текст
2020
Le Cor, François | Slaby, Sylvain | Gaillard, Juliette | Dauchy, Xavier | Feidt, Cyril | Banas, Damien
Fishponds are man-made shallow water bodies that are still little studied because of their small size. They represent high value ecosystems, both environmentally (biodiversity hotspot) and economically (fish production). They can have a high place on the hydrographic network, so their influence on water quality is of first importance for rivers and water bodies located downstream and monitored under the Water Framework Directive. These small water bodies can be a source of contaminants during draining period or an efficient buffer for pesticides. We wanted to evaluate whether these ponds could also be a remediation tool against metals by following the annual evolution of upstream/downstream flows. Cadmium, copper, lead and zinc concentrations were quantified in the dissolved phase upstream and downstream of three ponds, each one having a specific agricultural environment (traditional or organic). Metal concentration was quantified in sediments and water. For the dissolved phase, the predictive non-effect concentration was often exceeded, suggesting an environmental risk. Results highlighted also greater quantity of metals at the downstream of the pond compared to the upstream, suggesting remobilization into the ponds or direct cross-sectional contributions from the watershed (e.g. runoff from crops) or even remobilization. Regarding sediments, minimal contamination was shown but a high mineralogical variability. No buffer effect of ponds, which could reduce the risk of acute or chronic toxicity, was detected.
Показать больше [+] Меньше [-]Soil dissipation and bioavailability to earthworms of two fungicides under laboratory and field conditions Полный текст
2020
Nelieu, Sylvie | Delarue, Ghislaine | Amossé, Joël | Bart, Sylvain | Pery, Alexandre R.R. | Pelosi, Céline | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | ANSES CRD-2015-23_PPV15 ; | ANR-11-IDEX-0003,IPS,Idex Paris-Saclay(2011)
Soil dissipation and bioavailability to earthworms of two fungicides under laboratory and field conditions Полный текст
2020
Nelieu, Sylvie | Delarue, Ghislaine | Amossé, Joël | Bart, Sylvain | Pery, Alexandre R.R. | Pelosi, Céline | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | ANSES CRD-2015-23_PPV15 ; | ANR-11-IDEX-0003,IPS,Idex Paris-Saclay(2011)
International audience | The representativeness of laboratory studies of the fate of pesticides in soil in field conditions is questionable. This study aimed at comparing the dissipation and bioavailability to earthworms of two fungicides, dimoxystrobin (DMX) and epoxiconazole (EPX), over 12 months under laboratory and field conditions. In both approaches, the fungicides were applied to the same loamy soil as a formulated mixture at several concentrations. We determined total DMX and EPX concentrations in the soil using exhaustive extraction, their environmental availability using mild extraction and their bioavailability through internal concentrations in exposed earthworms. The initial fungicide application appeared as much better controlled in terms of dose and homogeneity in the laboratory than in the field. One year after application, a similar dissipation rate was observed between the laboratory and field experiments (ca 80% and 60% for DMX and EPX, respectively). Similarly, the ratio of available/total concentrations in soil displayed the same trend whatever the duration and the conditions (field or lab), EPX being more available than DMX. Finally, the environmental bioavailability of the two fungicides to earthworms was heterogeneous in the field, but, in the laboratory, the bioaccumulation was evidenced to be dose-dependent only for DMX. Our findings suggest that the actual fate of the two considered fungicides in the environment is consistent with the one determined in the laboratory, although the conditions differed (e.g., presence of vegetation, endogeic earthworm species). This study allowed better understanding of the fate of the two considered active substances in the soil and underlined the need for more research dedicated to the link between environmental and toxicological bioavailability.
Показать больше [+] Меньше [-]Soil dissipation and bioavailability to earthworms of two fungicides under laboratory and field conditions Полный текст
2020
Nélieu, Sylvie | Delarue, Ghislaine | Amossé, Joël | Bart, Sylvain | Péry, Alexandre R. R. | Pelosi, Céline
The representativeness of laboratory studies of the fate of pesticides in soil in field conditions is questionable. This study aimed at comparing the dissipation and bioavailability to earthworms of two fungicides, dimoxystrobin (DMX) and epoxiconazole (EPX), over 12 months under laboratory and field conditions. In both approaches, the fungicides were applied to the same loamy soil as a formulated mixture at several concentrations. We determined total DMX and EPX concentrations in the soil using exhaustive extraction, their environmental availability using mild extraction and their bioavailability through internal concentrations in exposed earthworms. The initial fungicide application appeared as much better controlled in terms of dose and homogeneity in the laboratory than in the field. One year after application, a similar dissipation rate was observed between the laboratory and field experiments (ca 80% and 60% for DMX and EPX, respectively). Similarly, the ratio of available/total concentrations in soil displayed the same trend whatever the duration and the conditions (field or lab), EPX being more available than DMX. Finally, the environmental bioavailability of the two fungicides to earthworms was heterogeneous in the field, but, in the laboratory, the bioaccumulation was evidenced to be dose-dependent only for DMX. Our findings suggest that the actual fate of the two considered fungicides in the environment is consistent with the one determined in the laboratory, although the conditions differed (e.g., presence of vegetation, endogeic earthworm species). This study allowed better understanding of the fate of the two considered active substances in the soil and underlined the need for more research dedicated to the link between environmental and toxicological bioavailability.
Показать больше [+] Меньше [-]Usability of the bivalves Dreissena polymorpha and Anodonta anatina for a biosurvey of the neurotoxin BMAA in freshwater ecosystems Полный текст
2020
Lepoutre, A. | Hervieux, J. | Faassen, E.J. | Zweers, A.J. | Lurling, M. | Geffard, A. | Lance, E.
The environmental neurotoxin β-methylamino-L-alanine (BMAA) may represent a risk for human health in case of chronic exposure or after short-term exposure during embryo development. BMAA accumulates in freshwater and marine organisms consumed by humans. It is produced by marine and freshwater phytoplankton species, but the range of producers remains unknown. Therefore, analysing the phytoplankton composition is not sufficient to inform about the risk of freshwater contamination by BMAA. Filter-feeders mussels have accumulation capacities and therefore appear to be relevant to monitor various pollutants in aquatic ecosystems. We investigated the suitability of the freshwater mussels Dreissena polymorpha and Anodonta anatina for monitoring BMAA in water. Both species were exposed to 1, 10, and 50 μg of dissolved BMAA/L daily for 21 days, followed by 42 days of depuration in clean water. On days 0, 1, 7, 14, and 21 of exposure and 1, 7, 14, 21 and 42 of depuration, whole D. polymorpha and digestive glands of A. anatina were sampled, and the total BMAA concentration was measured. D. polymorpha accumulated BMAA earlier (from day 1 at all concentrations) and at higher tissue concentrations than A. anatina, which accumulated BMAA from day 14 when exposed to 10 μg BMAA/L and from day 7 when exposed to 50 μg BMAA/L. As BMAA accumulation by D. polymorpha was time and concentration-dependent, with a significant elimination during the depuration period, this species may be able to reflect the levels and dynamics of water contamination by dissolved BMAA. The species A. anatina could be used for monitoring water concentrations above 10 μg BMAA/L. D. polymorpha and A. anatina could be used to biomonitor BMAA in fresh water.
Показать больше [+] Меньше [-]Uptake and physiological effects of the neonicotinoid imidacloprid and its commercial formulation Confidor® in a widespread freshwater oligochaete Полный текст
2020
Contardo-Jara, Valeska | Gessner, Mark O.
The neonicotinoid imidacloprid (IMI) is one of the most extensively applied neuro-active insecticides worldwide and continues to enter surface waters in many countries despite a recent ban for outdoor use in the EU. Yet little is known about ecotoxicological effects on non-target benthic freshwater species exposed to environmentally relevant concentrations of IMI and its marketed products. The aim of the present study was to narrow this gap by assessing effects of pure IMI and its commercial formulation Confidor® on the aquatic oligochaete Lumbriculus variegatus, a key species in freshwater sediments. To this end, we determined dose-response relationships in 24 h toxicity tests, bioconcentration during 24 h and 5 d of exposure to 0.1, 1 and 10 μg IMI L⁻¹, and physiological stress responses by measuring glutathione S-transferase, glutathione reductase and catalase activity in the same conditions. Maximum neonicotinoid concentrations reported from the field were lethal to L. variegatus within 24 h (LC₅₀ of 65 and 88 μg IMI L⁻¹ in pure form and as active ingredient of Confidor®, respectively). At sub-lethal exposure concentrations, tissue content of IMI significantly increased with exposure time. The observed bioconcentration factors (BCFs) were far above the water octanol coefficient (KOW), indicating a potentially large underestimation of IMI bioaccumulation when based on KOW. Activities of biotransformation and antioxidant enzymes indicated attempts of L. variegatus to counter xenobiotic-triggered oxidative stress to very low IMI and Confidor® concentrations. Together, our data add significantly to growing evidence that the continued proliferation of neonicotinoids require increased efforts in environmental risk assessment, especially in view of species-specific differences in sensitivities to the insecticide and possibly to additives of commercial formulations.
Показать больше [+] Меньше [-]Long-term variation in CO2 emissions with implications for the interannual trend in PM2.5 over the last decade in Beijing, China Полный текст
2020
Liu, Zan | Liu, Zirui | Song, Tao | Gao, Wenkang | Wang, Yinghong | Wang, Lili | Hu, Bo | Xin, Jinyuan | Wang, Yuesi
Long-term CO₂ and PM₂.₅ measurements in urban areas have important impacts on understanding the roles of urbanization in climate change and air pollution. From 2009 to 2017, CO₂ fluxes were measured by the eddy covariance (EC) system at a height of 140 m on the Beijing Meteorological Tower. The CO₂ fluxes followed a typical two-peak diurnal pattern all year round. The PM₂.₅ concentrations followed a similar diurnal pattern as the CO₂ fluxes in summer but a different diurnal pattern in winter (low in the day and high at night). On a seasonal time scale, both the CO₂ fluxes and the PM₂.₅ concentrations showed a pronounced seasonal variation (high in winter and low in summer). The spatial variations in CO₂ fluxes were dominated by the prevailing land use types within the flux footprint, particularly dense residential areas and heavy traffic roads. On both diurnal and annual time scales, the urban underlying surface was a net source of CO₂. The 9-year average annual total CO₂ flux was 36.4 kg CO₂·m⁻² yr⁻¹. Depending on the yearly prevailing wind direction, the effect of the heterogeneity correction on the annual total CO₂ fluxes based on the gap-filled dataset could reach up to 3.5%. Over the 9-year period, both the CO₂ fluxes and the PM₂.₅ concentrations exhibited a declining interannual trend, and CO₂ fluxes could account for 64% of the interannual variability in PM₂.₅ concentrations. In summer, emissions were more likely to control the interannual variability in PM₂.₅ concentrations, whereas in winter, meteorological conditions had a greater impact on the interannual variability in PM₂.₅ concentrations.
Показать больше [+] Меньше [-]Emission drivers and variability of ambient isoprene, formaldehyde and acetaldehyde in north-west India during monsoon season Полный текст
2020
Mishra, A.K. | Sinha, V.
Isoprene, formaldehyde and acetaldehyde are important reactive organic compounds which strongly impact atmospheric oxidation processes and formation of tropospheric ozone. Monsoon meteorology and the topography of Himalayan foothills cause surface emissions to get rapidly transported both horizontally and vertically, thereby influencing atmospheric processes in distant regions. Further in monsoon, Indo-Gangetic Plain is a major rice growing region of the world and daytime hourly ozone can frequently exceed phytotoxic dose of 40 ppb O₃. However, the sources and ambient variability of these compounds which are potent ozone precursors are unknown. Here, we investigate the sources and photochemical processes driving their emission/formation during monsoon season from a sub-urban site at the foothills of the Himalayas. The measurements were performed in July, August and September using a high sensitivity mass spectrometer. Average ambient mixing ratios (±1σ variability) of isoprene, formaldehyde, acetaldehyde, and the sum of methyl vinyl ketone and methacrolein (MVK+MACR), were 1.4 ± 0.3 ppb, 5.7 ± 0.9 ppb, 4.5 ± 2.0 ppb, 0.75 ± 0.3 ppb, respectively, and much higher than summertime values in May. For isoprene these values were comparable to mixing ratios observed over tropical forests. Surprisingly, despite occurrence of anthropogenic emissions, biogenic emissions were found to be the major source of isoprene with peak daytime isoprene driven by temperature (r ≥ 0.8) and solar radiation. Photo-oxidation of precursor hydrocarbons were the main sources of acetaldehyde, formaldehyde and MVK+MACR. Ambient mixing ratios of all the compounds correlated poorly with acetonitrile (r ≤ 0.2), a chemical tracer for biomass burning suggesting negligible influence of biomass burning during monsoon season. Our results suggest that during monsoon season when radiation and rain are no longer limiting factors and convective activity causes surface emissions to be transported to upper atmosphere, biogenic emissions can significantly impact the remote upper atmosphere, climate and ozone affecting rice yields.
Показать больше [+] Меньше [-]Distribution and characteristics of microplastics in the Yulin River, China: Role of environmental and spatial factors Полный текст
2020
Mao, Yufeng | Li, Hong | Gu, Weikang | Yang, Guofeng | Liu, Yao | He, Qiang
As inland freshwaters act as a major transport pathway for marine microplastic pollution, microplastic pollution in freshwater systems has recently received growing attention. However, the role of environmental and spatial factors in shaping the distribution and characteristics of microplastic pollution in reservoir ecosystems is not well understood. Here, we studied microplastic pollution in the surface water of the Yulin River, a typical tributary of the upper reaches of the Three Gorges Reservoir (TGR). The abundance of microplastics were 1.30 × 10⁻², 1.95 × 10⁻¹ and 3.60 × 10⁻¹ items/L in the mainstream, tributaries and bays of the Yulin River, respectively. Polyethylene, polypropylene, and polystyrene were identified as the predominant types. The most common shapes were line/fiber and foam. Small-sized particles dominated the collected microplastics. Aged surface was identified by scanning electron microscopy and X-ray photoelectron spectroscopy. The microplastics in the Yulin River were largely of secondary origin. Microplastic pollution varied in space. The abundance of microplastic was higher upstream reaches than downstream, which was correlated with anthropogenic activity. The backwater of the TGR increased the abundance of microplastic in the estuary of the Yulin River. The abundance of microplastic was negatively correlated with the channel width. This study is helpful for understanding the characterics and distribution of microplastics in reservoir ecosystems within underdeveloped area, and can thereby inform well-directed strategies to mitigate microplastic pollution.
Показать больше [+] Меньше [-]