Уточнить поиск
Результаты 1821-1830 из 4,042
Preliminary characterization of biosurfactant produced by a PAH-degrading Paenibacillus sp. under thermophilic conditions Полный текст
2016
Mesbaiah, Fatma Zohra | Eddouaouda, Kamel | Badis, Abdelmalek | Chebbi, Alif | Hentati, Dorra | Sayadi, Sami | Chamkha, Mohamed
The capacities of a biosurfactant producing and polycyclic aromatic hydrocarbon (PAH) utilizing bacterium, namely, strain 1C, isolated from an Algerian contaminated soil, were investigated. Strain 1C belonged to the Paenibacillus genus and was closely related to the specie Paenibacillus popilliae, with 16S rRNA gene sequence similarity of 98.4 %. It was able to produce biosurfactant using olive oil as substrate. The biosurfactant production was shown by surface tension (32.6 mN/m) after 24 h of incubation at 45 °C and 150 rpm. The biosurfactant(s) retained its properties during exposure to elevated temperatures (70 °C), relatively high salinity (20 % NaCl), and a wide range of pH values (2–10). The infrared spectroscopy (FTIR) revealed that its chemical structure belonged to lipopeptide class. The critical micelle concentration (CMC) of this biosurfactant was about 0.5 g/l with 29.4 mN/m. In addition, the surface active compound(s) produced by strain 1C enhanced PAH solubility and showed a significant antimicrobial activity against pathogens. In addition to its biosurfactant production, strain 1C was shown to be able to utilize PAHs as the sole carbon and energy sources. Strain 1C as hydrocarbonoclastic bacteria and its interesting surface active agent may be used for cleaning the environments polluted with polyaromatic hydrocarbons.
Показать больше [+] Меньше [-]Removal and Recovery of Cr(VI) from Industrial Plating Wastewater Using Fibrous Anion Exchanger Полный текст
2016
Lee, Chang-Gu | Park, Jeong-Ann | Choi, Jae-Woo | Ko, Seok-Oh | Yi, Sang-hyŏp
The aim of this study was to investigate the removal and recovery of hexavalent chromium (Cr(VI)) from industrial plating wastewater using anion exchanger Kanecaron SA fibers in batch systems. The surface morphology and physicochemical properties of the fiber were analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), and Fourier transform infrared spectroscopy (FT-IR). The removal efficiency was affected by the solution pH and showed a plateau formation decreasing on both sides of pH 4. The Cr(VI) uptake on Kanecaron SA fibers was rapidly increased in the first 10 min, and the kinetic data fit well to the Elovich model. Isotherm model analysis demonstrates that the Redlich-Peterson model suitably describes the equilibrium data, and the maximum adsorption capacity (Q ₘ) from the Langmuir model was 87.366 mg/g for Cr(VI) in distilled water, 117.977 mg/g for total Cr, and 57.101 mg/g for Cr(VI) in wastewater. Additionally, the Cr(III) contained in the plating wastewater was removed by the Kanecaron SA fibers, while the other heavy metals were not removed. Thermodynamic analysis indicates that Cr(VI) adsorption to Kanecaron SA fibers decreased with increasing temperature from 10 to 50 °C, indicating the spontaneous and exothermic nature of the sorption process. The removal efficiency was maintained above 80 % during four regeneration cycles.
Показать больше [+] Меньше [-]Effect of tourmaline on denitrification characteristics of hydrogenotrophic bacteria Полный текст
2016
Wang, Wei | Jiang, Hongyan | Zhu, Guangquan | Song, Xueying | Liu, Xingyu | Qiao, Ya
To improve the denitrification characteristics of anaerobic denitrifying bacteria and obviate the disadvantage of use of explosive hydrogen gas, tourmaline, a polar mineral, was added to the hydrogenotrophic denitrification system in this study. Microbial reduction of nitrate in the presence of tourmaline was evaluated to assess the promotion effect of tourmaline on nitrate biodegradation. The experiment results demonstrated that tourmaline speeded up the cultivation process of bacteria from 65 to 36 days. After domestication of the bacteria, nitrate (50 mg NO₃ ⁻–N L⁻¹) was completely removed within 3 days in the combined tourmaline–bacteria system, and the generated nitrite was also removed within 8 days. The reduction rate in this system is higher relative to that in the bacteria system alone. Efficient removal of nitrate by tourmaline-supported anaerobic bacteria (without external hydrogen input) indicated that tourmaline might act as the sole hydrogen donor to sustain autotrophic denitrification. Besides the production of hydrogen, the promoted activity of anaerobic denitrifying bacteria might be caused by the change of water properties, e.g., the pH of aqueous solutions was altered to about 8.0 and the oxidation–reduction potential decreased by 62 % in the tourmaline system. The distinctive effects of tourmaline on bacteria were related to its electric properties.
Показать больше [+] Меньше [-]Impact of the Linked Surface Water-Soil Water-Groundwater System on Transport of E. coli in the Subsurface Полный текст
2016
Dwivedi, Dipankar | Mohanty, Binayak P. | Lesikar, Bruce J.
Escherichia coli (E. coli) contamination of groundwater (GW) and surface water (SW) occurs significantly through the subsurface from onsite wastewater treatment systems (OWTSs). However, E. coli transport in the subsurface remains inadequately characterized at the field scale, especially within the vadose zone. Therefore, the aim of this research is to investigate the impact of groundwater fluctuations (e.g., recharging, discharging conditions) and variable conditions in the vadose zone (e.g., pulses of E. coli flux) by characterizing E. coli fate and transport in a linked surface water-soil water-groundwater system (SW-SoW-GW). In particular, this study characterizes the impact of flow regimes on E. coli transport in the subsurface and evaluates the sensitivity of parameters that control the transport of E. coli in the SW-SoW-GW system. This study was conducted in Lake Granbury, which is an important water supply in north-central Texas providing water for over 250,000 people. Results showed that there was less removal of E. coli during groundwater recharge events as compared to GW discharge events. Also, groundwater and surface water systems largely control E. coli transport in the subsurface; however, temporal variability of E. coli can be explained by linking the SW-SoW-GW system. Moreover, sensitivity analysis revealed that saturated water content of the soil, total retention rate coefficient, and hydraulic conductivity are important parameters for E. coli transport in the subsurface.
Показать больше [+] Меньше [-]Adsorption of Ethyl Acetate from Water by Nanoporous Carbon Prepared from Waste Materials Полный текст
2016
Stoycheva, I.G. | Tsyntsarski, B.G. | Petrova, B.N. | Kumanek, B. | Budinova, T.K. | Petrov, N.V.
The adsorption of ethyl acetate, a volatile organic compound, on activated carbons, synthesized from various precursors based on by-products and waste materials—polymer, biomass, coal tar pitch—was studied. The activated carbons were prepared by thermochemical treatment of the precursors, carbonization, and subsequent activation with water vapor. Surface and textural properties of obtained carbon adsorbents were characterized by low-temperature N₂ adsorption, Boehm’s method, etc. The activated carbons are distinguished by relatively high surface area and developed pore structure. The adsorption investigations were performed with water solutions of ethyl acetate, and the obtained results fit well the Langmuir model, as well as the Freundlich model. All activated carbons demonstrated considerably high adsorption capacity in the range 160–450 mg/g. The obtained data indicate that the adsorption ability of activated carbon toward ethyl acetate depends on the surface area, and it increases with increasing the content of mesopores, where ethyl acetate molecules are preferably adsorbed.
Показать больше [+] Меньше [-]Assessment of the Fate of Escherichia coli in Different Stages of Wastewater Treatment Plants Полный текст
2016
Raboni, Massimo | Gavasci, Renato | Torretta, Vincenzo
Seven full-scale wastewater treatment plants were investigated to highlight the effectiveness of each treatment stage on removing Escherichia coli. The primary sedimentation achieved an average E. coli removal efficiency of 30.5% which was much lower than the suspended solids (58%), thus, revealing the absence of a linear relationship between the two parameters. Biological processes proved to be very important in the removal of E. coli through adsorption inside the sludge flocs and complex decay (mortality). In biological processes with a long retention time, such as activated sludge denitrification-nitrification, the decay was very important, whereas in the more traditional activated sludge process, without nitrification, the contribution of adsorption and mortality was quite balanced. Overall, the mechanical-biological treatment achieved a removal efficiency of 91.8–96.5% depending on the process. Additional removal can be achieved by disinfection. The effectiveness of E. coli removal with sodium hypochlorite was strictly depended on the product of residual chlorine (C R) with the contact time (t). The experimental curve fitted the Collins model well, with a standard deviation of less than 7%.
Показать больше [+] Меньше [-]Photocatalytic Oxidation of Carbamazepine: Application of an Experimental Design Methodology Полный текст
2016
Carabin, Anne | Drogui, Patrick | Robert, Didier
Carbamazepine is one of the pharmaceutical compounds frequently detected in the receiving waters and water bodies. The main objective of this study was to develop a quadratic model to predict carbamazepine (CBZ) photocatalytic removal through a response surface methodology. A factorial plan (linear model; 2⁴ experiments) was used to determine the contribution of individual factors (pH, CBZ concentration, photocatalyst concentration, and treatment time) and interactions among the factors. Pollutant concentration and treatment time were found to be the most important parameters influencing the oxidation rate, with respective contributions of 19.22 and 71.55 %. Central composite methodology was then applied to determine the optimal experimental parameters for CBZ oxidation. The highest percentage of CBZ removed was 94.67 ± 0.51 %, recorded using a pH of 5, a minimal CBZ concentration of 10 mg/L, a photocatalyst concentration of 1.14 g/L, and a treatment time of 90 min. The effects of different anions (NO₃ ⁻ and SO₄ ²⁻) and cations (Cu²⁺, Cr³⁺, Zn²⁺) were also studied. Copper was found to have both catalytic and inhibitory effects on CBZ removal rate.
Показать больше [+] Меньше [-]Electrokinetic Removal of As from Soil Washing Residue Полный текст
2016
Shin, Su-Yeon | Park, Sang-Min | Baek, Kitae
In this study, electrokinetic remediation (EKR) was carried out to remove arsenic (As) from soil washing residue. We screened various processing fluids and found that oxalic acid was most effective for As removal because it reductively dissolved Fe and As from the soil. In EKR, however, NaOH was a more effective agent for removing As, implying that the main removal mechanism of As was ion exchange between OH– and oxyanionic As. Oxalic and citric acid, both of which were efficient agents for removing As in the screening tests, did not effectively remove As by EKR, probably due to the relatively high pH and low soil-to-agent ratio. In EKR, As was mainly removed by electromigration toward the anode, even under high amounts of accumulated electro-osmotic flow. Therefore, strategies that increase electromigration have potential for enhancing As removal.
Показать больше [+] Меньше [-]Aluminum and Chromium Toxicity in Maize: Implications for Agronomic Attributes, Net Photosynthesis, Physio-Biochemical Oscillations, and Metal Accumulation in Different Plant Parts Полный текст
2016
Anjum, Shakeel Ahmad | Ashraf, Umair | Khan, Imran | Tanveer, Mohsin | Saleem, Muhammad Farrukh | Wang, Longchang
Phytotoxic effects of a single heavy metal on different crops are widely reported; however, consequences of combined metal toxicity on maize are rarely investigated. In this study, a pot experiment was conducted to assess the phytotoxic effects both Al and Cr on morphophysiological and biochemical traits, photosynthetic gas exchange capacities, metal uptake, and translocation in different plant parts. Plants were exposed to Al³⁺ (100 μM), Cr⁶⁺ (100 μM), and Al³⁺ + Cr⁶⁺ (100 + 100 μM), and data were collected at pre- and post-silking stages while uncontaminated pots were served as control (Ck). Results depicted that both Al and Cr impaired maize growth and yield response and inhibited photosynthesis and gas exchange attributes i.e., transpiration, stomatal conductance, inter-cellular CO₂, as well as water use efficiency (WUE) and intrinsic water use efficiency (WUEi). Moreover, Al and Cr toxicities caused lipid peroxidation and membrane damage while activated antioxidative defense system in terms of superoxide dismutase (SOD), peroxidaes (POD), and catalase (CAT) and mediated reduced glutathione contents (GSH). Increased proline and reduced protein contents were also observed with a combined metal toxicity. Interestingly, Cr proved to be more toxic than Al whereas affects were more apparent where both Al and Cr were applied simultaneously. Plant exposure to both Al and Cr increased metal contents in different plant parts, while maximum metal contents were recorded in roots followed by stem, leaves, corn ear, and grains. Overall severity in phytotoxic effects was observed as Al+Cr > Cr > Al > Ck. Additionally, values of combined application of both Al + Cr were higher than those of the linear sum of Al and Cr alone, suggesting that synergistic effects of Al + Cr were more toxic than their individual effects. Hence, combined metal toxicity proved more damaging for maize than individual metal stress.
Показать больше [+] Меньше [-]Variations of Nutrients in Gross Rainfall, Stemflow, and Throughfall Within Revegetated Desert Ecosystems Полный текст
2016
Zhang, Ya-feng | Wang, Xin-Ping | Pan, Yan-xia | Hu, Rui
Revegetation in arid desert ecosystems is emerging as a practical strategy to cease sand dune encroachment and combat desertification worldwide. The revegetation is expected to affect the spatial distribution of rainfall to the ground within vegetation communities. However, the impact of revegetation on the temporal distribution of dry and/or wet dust fall trapped by shrub canopies via stemflow and throughfall remains a topic of concern for shrub “fertile islands.” This study investigated whether xerophytic shrub community acts as a sink of various cations (Na⁺, K⁺, Ca²⁺, and Mg²⁺), inorganic anions (Cl⁻ and SO₄ ²⁻), total nitrogen, and total phosphorus to the revegetated desert ecosystems. Gross rainfall, the stemflow, and throughfall of two codominated xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) were volumetrically measured after natural rainfall events, and their samples were chemically analyzed in the laboratory. Results showed that ions had higher concentrations in stemflow than in throughfall, followed by gross rainfall. Ion concentrations in stemflow and throughfall strongly depends on the first flush effect, rainfall depth, and the antecedent dry period before a rainfall event occurring. Concentrations of most of the ions in stemflow and throughfall collected after the first rainfall event of a year were obviously higher than other rainfall events for both shrub species, suggesting a first flush effect. Ion concentrations generally decreased with the increasing depth of gross rainfall, stemflow, and throughfall, while increased with prolonged antecedent dry period. Based on nutrient input by stemflow and throughfall at the community scale, we conclude that chemical enrichment of stemflow and throughfall plays an important role in forming the shrub fertile islands and contributes significantly to a sustainable succession of the revegetated desert ecosystems.
Показать больше [+] Меньше [-]