Уточнить поиск
Результаты 1841-1850 из 7,995
Cadmium transfer in contaminated soil-rice systems: Insights from solid-state speciation analysis and stable isotope fractionation Полный текст
2021
Wiggenhauser, Matthias | Aucour, Anne-Marie | Bureau, Sarah | Campillo, Sylvain | Telouk, Philippe | Romani, Marco | Ma, Jian Feng | Landrot, Gautier | Sarret, Géraldine
Initial Cadmium (Cd) isotope fractionation studies in cereals ascribed the retention of Cd and its light isotopes to the binding of Cd to sulfur (S). To better understand the relation of Cd binding to S and Cd isotope fractionation in soils and plants, we combined isotope and XAS speciation analyses in soil-rice systems that were rich in Cd and S. The systems included distinct water management (flooded vs. non-flooded) and rice accessions with (excluder) and without (non-excluder) functional membrane transporter OsHMA3 that transports Cd into root vacuoles. Initially, 13% of Cd in the soil was bound to S. Through soil flooding, the proportion of Cd bound to S increased to 100%. Soil flooding enriched the rice plants towards heavy isotopes (δ¹¹⁴/¹¹⁰Cd = −0.37 to −0.39%) compared to the plants that grew on non-flooded soils (δ¹¹⁴/¹¹⁰Cd = −0.45 to −0.56%) suggesting that preferentially light Cd isotopes precipitated into Cd sulfides. Isotope compositions in CaCl₂ root extracts indicated that the root surface contributed to the isotope shift between soil and plant during soil flooding. In rice roots, Cd was fully bound to S in all treatments. The roots in the excluder rice strongly retained Cd and its lights isotopes while heavy isotopes were transported to the shoots (Δ¹¹⁴/¹¹⁰Cdₛₕₒₒₜ₋ᵣₒₒₜ 0.16–0.19‰). The non-excluder rice accumulated Cd in shoots and the apparent difference in isotope composition between roots and shoots was smaller than that of the excluder rice (Δ¹¹⁴/¹¹⁰Cdₛₕₒₒₜ₋ᵣₒₒₜ −0.02 to 0.08‰). We ascribe the retention of light Cd isotopes in the roots of the excluder rice to the membrane transport of Cd by OsHMA3 and/or chelating Cd–S complexes in the vacuole. Cd–S was the major binding form in flooded soils and rice roots and partly contributed to the immobilization of Cd and its light isotopes in soil-rice systems.
Показать больше [+] Меньше [-]Direct and cross impacts of upwind emission control on downwind PM2.5 under various NH3 conditions in Northeast Asia Полный текст
2021
Kim, Eunhye | Kim, Byeong-Uk | Kim, Hyun Cheol | Kim, Soontae
Emissions reductions in upwind areas can influence the PM₂.₅ concentrations in downwind areas via long-range transport. However, few studies have assessed the impact of upwind PM₂.₅ precursor controls on changes in downwind PM₂.₅ concentrations. In this study, we analyzed the overall impact of PM₂.₅ precursor emission controls in upwind areas on PM₂.₅ in downwind areas with two types of impacts: “direct impact” and “cross impact.” The former refers to PM₂.₅ changes in downwind areas due to the transported PM₂.₅ itself, whereas the latter represents PM₂.₅ changes due to reactions between the transported gaseous precursors and intermediates (i.e., HNO₃) originating from upwind areas and locally emitted precursors (i.e. NH₃) in the downwind areas. As a case study, we performed air quality modeling for Northeast Asia for January 15–17, 2016 by setting China and South Korea as the upwind and downwind areas, respectively. To account for potential spatiotemporal variations in NH₃ emissions in downwind areas, we considered two NH₃ conditions. When NOx emissions in China were reduced by 35%, in downwind areas the PM₂.₅ concentrations decreased by 2.2 μg/m³ under NH₃-rich conditions, while PM₂.₅ concentrations increased by 2.3 μg/m³ under NH₃-poor conditions. The direct impact increased by 4.0 μg/m³ in both cases due to upwind NOₓ disbenefit effects. However, the cross impacts led to a PM₂.₅ decrease of 6.2 μg/m³ under NH₃-rich conditions versus a PM₂.₅ increase of 1.7 μg/m³ under NH₃-poor conditions. We noted that PM₂.₅ concentrations in the downwind areas may not improve unless a cross impact outweighs a direct impact. This may be one of the reasons why South Korea PM₂.₅ concentrations have not declined despite efforts by China to reduce their PM₂.₅ precursor emissions.
Показать больше [+] Меньше [-]Trophic dynamics of selenium in a boreal lake food web Полный текст
2021
Graves, Stephanie D. | Liber, K. (Karsten) | Palace, Vince | Hecker, Markus | Doig, Lorne E. | Janz, David M.
Selenium (Se) is both an essential micronutrient and a contaminant of concern that is of particular interest in mining-influenced waterbodies in Canada. The objective of this research was to characterize the trophic dynamics of selenium along a gradient of exposure concentrations in a Canadian boreal lake ecosystem. From June 20 to August 22, 2018, six limnocorrals (littoral, ∼3000 L enclosures) were spiked with mean measured concentrations of 0.4, 0.8, 1.6, 3.4, 5.6 and 7.9 μg Se/L as selenite, and three limnocorrals served as untreated controls (background aqueous Se = 0.08–0.09 μg/L). Total Se (TSe) concentrations in water, periphyton, phytoplankton, sediment, benthic macroinvertebrates, zooplankton and female finescale dace (Phoxinus neogaeus; added on day 21 of the experiment) were measured throughout and at the end of the experiment. Total Se bioaccumulation by organisms was generally non-linear. Greater uptake by phytoplankton than periphyton was observed. Taxonomic differences in accumulation of TSe by invertebrates (Heptageniidae = Chironomidae > zooplankton) were observed as well. Fish muscle and ovary tissue TSe bioaccumulation was more variable than that at lower trophic levels and uptake patterns indicated that fish did not reach steady state concentrations. This research provides field-derived models for the uptake of Se by algae and invertebrates, and contributes to a better understanding of the dynamics of TSe bioaccumulation over a gradient of exposure concentrations in cold-water lentic systems.
Показать больше [+] Меньше [-]Association between coronavirus disease 2019 (COVID-19) and long-term exposure to air pollution: Evidence from the first epidemic wave in China Полный текст
2021
Zheng, Pai | Chen, Zhangjian | Liu, Yonghong | Song, Hongbin | Wu, Chieh-Hsi | Li, Bingying | Kraemer, Moritz U.G. | Tian, Huaiyu | Yan, Xing | Zheng, Yuxin | Stenseth, Nils Chr | Jia, Guang
Association between coronavirus disease 2019 (COVID-19) and long-term exposure to air pollution: Evidence from the first epidemic wave in China Полный текст
2021
Zheng, Pai | Chen, Zhangjian | Liu, Yonghong | Song, Hongbin | Wu, Chieh-Hsi | Li, Bingying | Kraemer, Moritz U.G. | Tian, Huaiyu | Yan, Xing | Zheng, Yuxin | Stenseth, Nils Chr | Jia, Guang
People with chronic obstructive pulmonary disease, cardiovascular disease, or hypertension have a high risk of developing severe coronavirus disease 2019 (COVID-19) and of COVID-19 mortality. However, the association between long-term exposure to air pollutants, which increases cardiopulmonary damage, and vulnerability to COVID-19 has not yet been fully established. We collected data of confirmed COVID-19 cases during the first wave of the epidemic in mainland China. We fitted a generalized linear model using city-level COVID-19 cases and severe cases as the outcome, and long-term average air pollutant levels as the exposure. Our analysis was adjusted using several variables, including a mobile phone dataset, covering human movement from Wuhan before the travel ban and movements within each city during the period of the emergency response. Other variables included smoking prevalence, climate data, socioeconomic data, education level, and number of hospital beds for 324 cities in China. After adjusting for human mobility and socioeconomic factors, we found an increase of 37.8% (95% confidence interval [CI]: 23.8%–52.0%), 32.3% (95% CI: 22.5%–42.4%), and 14.2% (7.9%–20.5%) in the number of COVID-19 cases for every 10-μg/m³ increase in long-term exposure to NO₂, PM₂.₅, and PM₁₀, respectively. However, when stratifying the data according to population size, the association became non-significant. The present results are derived from a large, newly compiled and geocoded repository of population and epidemiological data relevant to COVID-19. The findings suggested that air pollution may be related to population vulnerability to COVID-19 infection, although the extent to which this relationship is confounded by city population density needs further exploration.
Показать больше [+] Меньше [-]Association between coronavirus disease 2019 (COVID-19) and long-term exposure to air pollution: Evidence from the first epidemic wave in China Полный текст
2021
Zheng, Pai | Chen, Zhangjian | Liu, Yonghong | Song, Hongbin | Wu, Chieh-Hsi | Li, Bingying | Kraemer, Moritz U. G. | Tian, Huaiyu | Zheng, Yuxin | Stenseth, Nils Christian | Jia, Guang
People with chronic obstructive pulmonary disease, cardiovascular disease, or hypertension have a high risk of developing severe coronavirus disease 2019 (COVID-19) and of COVID-19 mortality. However, the association between long-term exposure to air pollutants, which increases cardiopulmonary damage, and vulnerability to COVID-19 has not yet been fully established. We collected data of confirmed COVID-19 cases during the first wave of the epidemic in mainland China. We fitted a generalized linear model using city-level COVID-19 cases and severe cases as the outcome, and long-term average air pollutant levels as the exposure. Our analysis was adjusted using several variables, including a mobile phone dataset, covering human movement from Wuhan before the travel ban and movements within each city during the period of the emergency response. Other variables included smoking prevalence, climate data, socioeconomic data, education level, and number of hospital beds for 324 cities in China. After adjusting for human mobility and socioeconomic factors, we found an increase of 37.8% (95% confidence interval [CI]: 23.8%–52.0%), 32.3% (95% CI: 22.5%–42.4%), and 14.2% (7.9%–20.5%) in the number of COVID-19 cases for every 10-μg/m3 increase in long-term exposure to NO2, PM2.5, and PM10, respectively. However, when stratifying the data according to population size, the association became non-significant. The present results are derived from a large, newly compiled and geocoded repository of population and epidemiological data relevant to COVID-19. The findings suggested that air pollution may be related to population vulnerability to COVID-19 infection, although the extent to which this relationship is confounded by city population density needs further exploration.
Показать больше [+] Меньше [-]Microplastics impair growth in two atlantic scleractinian coral species, Pseudodiploria clivosa and Acropora cervicornis Полный текст
2021
Hankins, Cheryl | Moso, Elizabeth | Lasseigne, Danielle
Scleractinian coral are experiencing global and regional stressors. Microplastics (<5 mm) are an additional stressor that may cause adverse effects on coral. Experiments were conducted to investigate ingestion size limits and retention times of microspheres in a two-day exposure as well as observing growth responses in a 12-week exposure in two Atlantic species, Pseudodiploria clivosa and Acropora cervicornis. In the two-day exposure, P. clivosa ingested a higher number of microspheres ranging in size from 425 μm–2.8 mm than A. cervicornis. Both species egested the majority of microspheres within 48 h of ingestion. In the long-term exposure, calcification and tissue surface area were negatively affected in the treatment group of both species. Exposure also negatively affected buoyant weight in A. cervicornis but not in P. clivosa. The results indicate that microplastics can affect growth responses, yet additional research is warranted to investigate potential synergistic impacts of microplastics and other stressors.
Показать больше [+] Меньше [-]On modelling growing menace of household emissions under COVID-19 in Indian metros Полный текст
2021
Beig, Gufran | Korhale, Nikhil | Rathod, Aditi | Maji, Sujit | Sahu, Saroj K. | Dole, Shruti | Latha, R. | Murthy, B.S.
While local anthropogenic emission sources contribute largely to deteriorate metro air quality, long range transport can also play a significant role in influencing levels of pollutants, particularly carbon monoxide (CO) that has a relatively long life span. A nationwide lockdown of two months imposed across India amid COVID-19 led to a dramatic decline in major sources of emissions except for household, mainly from cooking. This initially led to declined levels of CO in two of the largest megacities of India, Delhi and Mumbai under stable weather conditions, followed by a distinctly different variability under the influence of prevailing mesoscale circulation. We hereby trace the sources of CO from local emissions to transport pathways and interpret the observed variability in CO using the interactive WRF-Chem model and back trajectory analysis. For this purpose, COVID-19 emission inventory of CO has been estimated. Model results indicate a significant contribution from externally generated CO in Delhi from surrounding regions and an unusual peak on 17th May amid lockdown due to long range transport from the source region of biofuel emissions in central India. However, the oceanic winds played a larger role in keeping CO levels in check in a coastal megacity Mumbai which otherwise has high CO emissions from household sources due to a larger share of urban slums. Keeping track of evolving carbon-intensive pathways can help inform government responses to the COVID-19 pandemic to prioritize controls of emissions sources.
Показать больше [+] Меньше [-]Parent, alkylated, oxygenated and nitrated polycyclic aromatic hydrocarbons in PM2.5 emitted from residential biomass burning and coal combustion: A novel database of 14 heating scenarios Полный текст
2021
Zhang, Yue | Shen, Zhenxing | Sun, Jian | Zhang, Leiming | Zhang, Bin | Zou, Haijiang | Zhang, Tian | Hang Ho, Steven Sai | Chang, Xiaojian | Xu, Hongmei | Wang, Tao | Cao, Junji
To characterize the emissions of polycyclic aromatic hydrocarbons (PAHs) from residential biomass burning and coal combustion in field environments, smoke samples were collected from the combustion of six types of biomass in heated kangs and four types of coal in traditional stoves and semi-gasifier stoves. The emission factors (EFs) of the total PAH were in the range of 84.5–344 mg/kg for biomass burning, with lower EFs for biomass with higher densities, and in the range of 38.0–206 mg/kg for coal combustion, with lower EFs for coals with higher maturity. Moreover, EFs were lower from high-density biomass fuels (wood trunk, 84.5 ± 11.3 mg/kg) than low-maturity coals (bituminous coal, 206 ± 16.5 mg/kg). Parent, oxygenated, alkylated, and nitrated PAHs accounted for 81.1%, 12.6%, 6.2%, and 0.1%, respectively, of the total-PAH EFs from biomass burning, and 84.7%, 13.8%, 1.4%, and 0.1%, respectively, of the total-PAH EFs from coal combustion. PAH source profiles differed negligibly between biomass fuels but differed significantly between bituminous coal and anthracite coal fuels. The characteristic species of sources were phenanthrene, 9-fluorenone, and 2-nitrobiphenyl for biomass burning, and were phenanthrene, benzo[ghi]perylene, 1,4-naphthoquinone, and 2-nitrobiphenyl for coal combustion. The ratios of benzo[b]fluoranthene/(benzo[b]fluoranthene + benzo[k]fluoranthene) were 0.40–0.45 for biomass burning and 0.89–0.91 for coal combustion, and these significantly different values constitute unique markers for distinguishing these fuels in source apportionment. Benzo[a]pyrene-equivalent factor emissions were 2.79–11.3 mg/kg for biomass and 7.49–41.9 mg/kg for coal, where parent PAHs contributed 92.0%–95.1% from biomass burning and 98.6%–98.8% from coal combustion. Total-PAH emissions from residential heating were 1552 t across Shaanxi province, to which wheat straw (445 t) in biomass burning and bituminous coal (438 t) in coal combustion were the highest contributors. Results from this study provide crucial knowledge for the source identification of PAHs as well as for the design of abatement strategies against pollutant emissions.
Показать больше [+] Меньше [-]Indoor heating triggers bacterial ecological links with tap water stagnation during winter: Novel insights into bacterial abundance, community metabolic activity and interactions Полный текст
2021
Zhang, Haihan | Xu, Lei | Huang, Tinglin | Liu, Xiang | Miao, Yutian | Liu, Kaiwen | Qian, Xuming
The overnight stagnation of tap water in plumbing systems can lead to water quality deterioration. Meanwhile, the indoor heating can improve the indoor temperature in cold areas during winter, which may affect the quality of tap water during stagnation. However, indoor heating drives bacterial ecological links with tap water stagnation during winter are not well understood. The results indicated that the water temperature increased significantly after stagnation during indoor heating periods. Moreover, the average intact cell number and total adenosine triphosphate (ATP) concentration increased 1.53-fold and 1.35-fold after stagnation, respectively (P < 0.01). In addition, the increase in the ATP per cell number indicated that the combined effects of stagnation and indoor heating could enhance the bacterial activity. Biolog data showed that the bacterial community metabolic capacity was significantly higher in stagnant water than that of fresh water. Co-occurrence networks suggested that the bacterial metabolic profile changed after stagnation during the heating periods. DNA analysis indicated that the composition of the bacterial community changed dramatically after stagnation. The abundances of potential pathogens such as Mycobacterium sp. and Pseudomonas sp. also increased after stagnation. These results will give novel insights on comprehensive understanding the combined effects of indoor heating and overnight stagnation on the water bacterial community ecology of plumbing systems, and provide a scientific basis for tap water quality management after overnight stagnation during the indoor heating periods.
Показать больше [+] Меньше [-]Independent and combined associations of urinary heavy metals exposure and serum sex hormones among adults in NHANES 2013–2016 Полный текст
2021
Tao, Chengzhe | Li, Zhi | Fan, Yun | Li, Xiuzhu | Qian, Hong | Yu, Hao | Xu, Qiaoqiao | Lu, Chuncheng
Accumulating evidences indicated that heavy metals may disrupt human sex hormones. However, the combined effects of heavy metals on sex hormones remain to be clarified. To explore the independent and combined associations between heavy metal exposure and serum sex hormones among adults, data of 2728 adults from the National Health and Nutrition Examination Survey (NHANES) was applied. We examined independent and combined associations of fourteen urinary heavy metals and three serum sex steroid hormones (total testosterone (TT), estradiol (E2) and sex hormone-binding globulin (SHBG)). Multivariate linear regression was used to evaluate the independent associations between metal exposure and sex hormone alterations. Principle component analysis -weighted quantile sum regression (PCA-WQSR) model was performed to estimate the combined associations in our individuals. In the co-exposure model, we determined that weighted quantile sum (WQS) index of industrial pollutants was negatively associated with E2 in females (WQS Percent change₈₋ₘₑₜₐₗ = -20.6%; 95% CI: -30.1%, -9.96%), while in males WQS index of water pollutants was negatively related to SHBG (WQS Percent change₈₋ₘₑₜₐₗ = -5.35%; 95% CI: -9.88%, -0.598%). Cadmium (Cd), tin (Sn) and lead (Pb) were the dominating metals of female E2-negative association while Ba was the leading contributor related to male SHBG reduction, which was consistent with the results of multivariate linear regression. Additionally, in postmenopausal women, the associations of E2 decrease with heavy metal co-exposure remained significant while Cd and monomethylarsonic acid (MMA) were identified as hazardous metals in the mixture. We concluded that the exposure to heavy metals was associated with human sex hormone alterations in independent or combined manners. Considering the design of NHANES study, further studies from other national-representative surveys are necessary.
Показать больше [+] Меньше [-]Estimating the impact of ground ozone concentrations on crop yields across China from 2014 to 2018: A multi-model comparison Полный текст
2021
Xu, Miaoqing | Yao, Qi | Chen, Danlu | Li, Manchun | Li, Ruiyuan | Gao, Bingbo | Zhao, Bo | Chen, Ziyue
Ground level ozone exerts a strong impact on crop yields, yet how to properly quantify ozone induced yield losses in China remains challenging. To this end, we employed a series of O₃-crop models to estimate ozone induced yield losses in China from 2014 to 2018. The outputs from all models suggested that the total Relative Yield Losses (RYL) of wheat in China from 2014 to 2018 was 18.4%–49.3% and the total RYL of rice was 6.2%–52.9%. Consequently, the total Crop Production Losses (CPL) of wheat and rice could reach 63.9–130.4 and 28.3–35.4 million tons, and the corresponding Total Economic Losses (TEL) could reach 20.5–44.7 and 11.0–15.3 billion dollars, stressing the great importance and urgency of national ozone management. Meanwhile, the estimation outputs highlighted the large variations between different regional O₃-crop models when applying to large scales.Instead of applying one unified O₃-crop models to all regions across China, we also explored the strategy of employing specific O₃-crop models in corresponding (and neighboring) regions to estimate ozone induced yield loss in China. The comparison of two strategies suggested that the mean value from multiple models may still present an inconsistent over/underestimation trend for different crops. Therefore, it is a preferable strategy to employ corresponding O₃-crop models in different regions for estimating the national crop losses caused by ozone pollution. However, the severe lack of regional O₃-crop models in most regions across China makes a robust estimation of national yield losses highly challenging. Given the large variations between O₃-crop interactions across regions, a systematic framework with massive regional O₃-crop models should be properly designed and implemented.
Показать больше [+] Меньше [-]