Уточнить поиск
Результаты 2041-2050 из 8,010
Long-term variability in base cation, sulfur and nitrogen deposition and critical load exceedance of terrestrial ecosystems in China Полный текст
2021
Zhao, Wenxin | Zhao, Yu | Ma, Mingrui | Chang, Ming | Duan, Lei
The rapid development of China's industrial economy and implementation of air pollution controls have led to great changes in sulfur (S), nitrogen (N) and base cation (BC) deposition in the past three decades. We estimated China's anthropogenic BC emissions and simulated BC deposition from 1985 to 2015 with a five-year interval using a multilayer Eulerian model. Deposition of S and N from 2000 to 2015 with a five-year interval was simulated with the EMEP MSC-W model and the Multi-resolution Emission Inventory of China (MEIC). The critical load (CL) and its exceedance were then calculated to evaluate the potential long-term acidification risks. From 1985 to 2005, the BC deposition in China was estimated to have increased by 16 % and then decreased by 33 % till 2015. S deposition was simulated to increase by 49 % from 2000 to 2005 and then decrease by 44 % in 2015, while N deposition increased by 32 % from 2000 to 2010 with a limited reduction afterward. The maximum CL of S was found to increase in 67 % of mainland China areas from 1985 to 2005 and to decline in 55 % of the areas from 2005 to 2015, attributed largely to the changed BC deposition. Consistent with the progress of national controls on SO₂ and NOX emissions, the CL exceedance of S increased from 2.9 to 4.6 Mt during 2000–2005 and then decreased to 2.5 Mt in 2015, while that of N increased from 0.4 in 2000 to 1.2 Mt in 2010 and then decreased to 1.1 Mt in 2015. The reduced BC deposition due to particle emission controls partially offset the benefit of SO₂ control on acidification risk reduction in the past decade. It demonstrates the need for a comprehensive strategy for multi-pollutant control against soil acidification.
Показать больше [+] Меньше [-]Stigmasterol root exudation arising from Pseudomonas inoculation of the duckweed rhizosphere enhances nitrogen removal from polluted waters Полный текст
2021
Lu, Yufang | Kronzucker, Herbert J. | Shi, Weiming
Rhizospheric microorganisms such as denitrifying bacteria are able to affect ‘rhizobioaugmention’ in aquatic plants and can help boost wastewater purification by benefiting plant growth, but little is known about their effects on the production of plant root exudates, and how such exudates may affect microorganismal nitrogen removal. Here, we assess the effects of the rhizospheric Pseudomonas inoculant strain RWX31 on the root exudate profile of the duckweed Spirodela polyrrhiza, using gas chromatography/mass spectrometry. Compared to untreated plants, inoculation with RWX31 specifically induced the exudation of two sterols, stigmasterol and β-sitosterol. An authentic standard assay revealed that stigmasterol significantly promoted nitrogen removal and biofilm formation by the denitrifying bacterial strain RWX31, whereas β-sitosterol had no effect. Assays for denitrifying enzyme activity were conducted to show that stigmasterol stimulated nitrogen removal by targeting nitrite reductase in bacteria. Enhanced N removal from water by stigmasterol, and a synergistic stimulatory effect with RWX31, was observed in open duckweed cultivation systems. We suggest that this is linked to a modulation of community composition of nirS- and nirK-type denitrifying bacteria in the rhizosphere, with a higher abundance of Bosea, Rhizobium, and Brucella, and a lower abundance of Rubrivivax. Our findings provide important new insights into the interaction of duckweed with the rhizospheric bacterial strain RWX31 and their involvement in the aquatic N cycle and offer a new path toward more effective bio-formulations for the purification of N-polluted waters.
Показать больше [+] Меньше [-]Diagnosing complex odor problems occurring in micro-polluted source water: Primary approach and application Полный текст
2021
Guo, Qingyuan | Ding, Cheng | Xu, Haozhe | Zhang, Xiaohong | Li, Zhaoxia | Li, Xuan | Yang, Bairen | Chen, Tianming | Wang, Chunmiao | Yu, Jianwei
The odor problems in river-type micro-polluted water matrixes are complicated compared to those in lakes and reservoirs. For example, the TY River in Jiangsu Province has been associated with complex odors, whereas the specific odor compounds were not clear. In this paper, a comprehensive study on characterizing the odors and odorants in source water from the TY River was conducted. Six odor types, including earthy, marshy, fishy, woody, medicinal, and chemical odors, were detected for the first time; correspondingly, thirty-three odor-causing compounds were identified. By means of evaluating odor activity values and reconstituting the identified odorants, 95, 93, 92, 90, 89 and 88% of the earthy, marshy, fishy, woody, medicinal and chemical odors in the source waters could be clarified. Geosmin and 2-methylisoborneol were associated with earthy odor, while amyl sulfide, dibutyl sulfide, propyl sulfide, dimethyl disulfide, dimethyl trisulfide and indole were related to marshy odor. The major woody and fishy odor compounds were vanillin, geraniol, β-cyclocitral and 2,4-decadienal, 2-octenal, respectively. Medicinal and chemical odors were mainly caused by 2-chlorophenol, 4-bromophenol, 2,6-dichlorophenol and naphthalene, and 1,4-dichlorobenzene, respectively. This is the first study in which six odor types and thirty-three odorants were identified simultaneously in a river-type micro-polluted water source, which can offer a reference for odor management in drinking water treatment plants.
Показать больше [+] Меньше [-]Nanoplastics transport to the remote, high-altitude Alps Полный текст
2021
Materić, Dušan | Ludewig, Elke | Brunner, Dominik | Rockmann, Thomas | Holzinger, Rupert
Plastic materials are increasingly produced worldwide with a total estimated production of >8300 million tonnes to date, of which 60% was discarded. In the environment, plastics fragment into smaller particles, e.g. microplastics (size < 5 mm), and further weathering leads to the formation of functionally different contaminants – nanoplastics (size <1 μm). Nanoplastics are believed to have entirely different physical (e.g. transport), chemical (e.g. functional groups at the surface) and biological (passing the cell membrane, toxicity) properties compared to the micro- and macroplastics, yet, their measurement in the environmental samples is seldom available. Here, we present measurements of nanoplastics mass concentration and calculated the deposition at the pristine high-altitude Alpine Sonnblick observatory (3106 MASL), during the 1.5 month campaigh in late winter 2017. The average nanoplastics concentration was 46.5 ng/mL of melted surface snow. The main polymer types of nanoplastics observed for this site were polypropylene (PP) and polyethylene terephthalate (PET). We measured significantly higher concentrations in the dry sampling periods for PET (p < 0.002) but not for PP, which indicates that dry deposition may be the preferential pathway for PET leading to a gradual accumulation on the snow surfaces during dry periods. Air transport modelling indicates regional and long-range transport of nanoplastics, originating preferentially from European urban areas. The mean deposition rate was 42 (+32/-25) kg km⁻² year⁻¹. Thus more than 2 × 10¹¹ nanoplastics particles are deposited per square meter of surface snow each week of the observed period, even at this remote location, which raises significant toxicological concerns.
Показать больше [+] Меньше [-]Pyrolysis temperature-dependent carbon retention and stability of biochar with participation of calcium: Implications to carbon sequestration Полный текст
2021
Nan, Hongyan | Yin, Jianxiang | Yang, Fan | Luo, Ying | Zhao, Ling | Cao, Xinde
Converting biomass waste into biochar by slow pyrolysis with subsequent soil amendment is a prospective approach with multiple environmental benefits including soil contamination remediation, soil amelioration and carbon sequestration. This study selected cow manure as precursor to produce biochar under 300 °C, 400 °C, 500 °C and 600 °C, and a remarkable promotion of carbon (C) retention in biochar by incorporation of exogenous Ca was achieved at all investigated pyrolysis temperatures. The C retention was elevated from 49.2 to 68.3% of pristine biochars to 66.1–79.7% of Ca-composite biochars. It was interesting that extent of this improvement increased gradually with rising of pyrolysis temperature, i.e., doping Ca in biomass promoted pyrolytic C retention in biochar by 16.6%, 23.4%, 29.1% and 31.1% for 300 °C, 400 °C, 500 °C and 600 °C, respectively. Thermogravimetric-mass spectrometer (TG-MS) and X-ray photoelectron spectroscopy (XPS) showed that Ca catalyzed thermal-chemical reactions and simultaneously suppressed the release of small organic molecular substances (C₂–C₇) via physical blocking (CaO, CaCO₃, and CaClOH) and chemical bonding (CO and OC–O). The catalyzation mainly occurred at 200–400 °C, while the suppression was more prominent at higher temperatures. Raman spectra and 2D FTIR analysis on biochar microstructure showed that presence of Ca had negative influence on carbon aromatization and thus weakened biochar's stability, while increasing pyrolysis temperature enhanced the stability of carbon structure. Finally, with integrating “C retention” during pyrolysis and “C stability” in biochar, the maximum C sequestration (56.3%) was achieved at 600 °C with the participation of Ca. The study highlights the importance of both Ca and pyrolysis temperature in enhancing biochar's capacity of sequestrating C.
Показать больше [+] Меньше [-]Xenopus in revealing developmental toxicity and modeling human diseases Полный текст
2021
Gao, Juanmei | Shen, Wanhua
The Xenopus model offers many advantages for investigation of the molecular, cellular, and behavioral mechanisms underlying embryo development. Moreover, Xenopus oocytes and embryos have been extensively used to study developmental toxicity and human diseases in response to various environmental chemicals. This review first summarizes recent advances in using Xenopus as a vertebrate model to study distinct types of tissue/organ development following exposure to environmental toxicants, chemical reagents, and pharmaceutical drugs. Then, the successful use of Xenopus as a model for diseases, including fetal alcohol spectrum disorders, autism, epilepsy, and cardiovascular disease, is reviewed. The potential application of Xenopus in genetic and chemical screening to protect against embryo deficits induced by chemical toxicants and related diseases is also discussed.
Показать больше [+] Меньше [-]Sulfur deficiency exacerbates phytotoxicity and residues of imidacloprid through suppression of thiol-dependent detoxification in lettuce seedlings Полный текст
2021
Zhang, Nan | Huang, Lin | Zhang, Yuxue | Liu, Lijuan | Sun, Chengliang | Lin, Xianyong
Sulfur, an essential macronutrient, plays important roles in plant development and stress mitigation. Sulfur deficiency, a common problem in agricultural soils, may disturb plant stress resistance and xenobiotic detoxification. In the present study, the function and mechanism of limited sulfur nutrition on the residues and phtotoxicity of imidacloprid were investigated in lettuce plants. Sulfur deficiency significantly increased imidacloprid accumulation in lettuce tissues, exacerbated imidacloprid biological toxicity by enhancing the accumulation of toxic metabolites, like imidacloprid-olefin. Simultaneously, imidacloprid-induced detoxification enzymes including cytochromes P450, glutathione S-transferases (GSTs) and glycosyltransferases were inhibited under limited sulfur supply. On the other hand, sulfur deficiency further enhanced the generation of reactive oxygen species and exacerbated lipid peroxidation in lettuce tissues. Sulfur deficiency mainly reduced the abundance of thiol groups, which are essential redox modulators as well as xenobiotic conjugators, and significantly inhibited GSTs expression. These results clearly suggested that sulfur deficiency inhibited the synthesis of sulfur-containing compounds, leading to increased accumulation of pesticide residues and toxic metabolites as well as reduced detoxification capacity, consequently leading to oxidative damage to plants. Therefore, moderate sulfur supply in regions where neonicotinoid insecticides are intensively and indiscriminately used may be an efficient strategy to reduce pesticide residues and the potential risk to ecosystem.
Показать больше [+] Меньше [-]Using soil erosion to locate nonpoint source pollution risks in coastal zones: A case study in the Yellow River Delta, China Полный текст
2021
Wang, Youxiao | Liu, Gaohuan | Zhao, Zhonghe | Wu, Chunsheng | Yu, Bowei
Soil erosion contributes greatly to nonpoint source pollution (NSP). We built a coastal NSP risk calculation method (CNSPRI) based on the Revised Universal Soil Loss Equation (RUSLE) and geospatial methods. In studies on the formation and transport of coastal NSP, we analysed the pollution impacts on the sea by dividing subbasins into the sea and monitoring the pollutant flux. In this paper, a case study in the Yellow River Delta showed that the CNSPRI could better predict the total nitrogen (TN) and total phosphorus (TP) NSP risks. The value of the soil erodibility factor (K) was 0.0377 t h·MJ⁻¹·mm⁻¹, indicating higher soil erodibility levels, and presented an increased trend from the west to the east coast. The NSP risk also showed an increased trend from west to east, and the worst status was found near the Guangli River of the south-eastern region. The contributions of the seven influencing factors to CNSPRI presented an order of vegetation cover > rainfall erosivity > soil content > soil erodibility > flow > flow path > slope. The different roles of source and sink landscapes influenced the pollutant outputs on a subbasin scale. Arable land and saline-alkali land were the two land-use types with the greatest NSP risks. Therefore, in coastal zones, to reduce NSP output risks, we should pay more attention to the spatial distribution of vegetation cover, increase its interception effect on soil loss, and prioritize the improvement of saline-alkali land to reduce the amount of bare land.
Показать больше [+] Меньше [-]Emission characteristics and assessment of odors from sludge anaerobic digestion with thermal hydrolysis pretreatment in a wastewater treatment plant Полный текст
2021
Han, Zhangliang | Li, Ruoyu | Shen, Hanzhang | Qi, Fei | Liu, Baoxian | Shen, Xiue | Zhang, Lin | Wang, Xiaoju | Sun, Chuanfeng
Anaerobic digestion (AD) with thermal hydrolysis pre-treatment (THP) is an effective sludge treatment method which provides several advantages such as enhanced biogas formation and fertilizer production. The main limitation to THP-AD is that hazardous odors, including NH₃ and volatile sulfur compounds (VSCs), are emitted during the sludge treatment process. In order to develop strategies to eliminate odors, it is necessary to identify the key odors and emissions sites. This study identified production of NH₃ (741.60 g·dry sludge t⁻¹) and VSCs (277.27 g·dry sludge t⁻¹) during sludge AD after THP, and measured emissions in each of the THP-AD sludge treatment sites. Odor intensity, odor active values, permissible concentration-time weighted average, and non-carcinogenic risks were also assessed in order to determine the sensory impact, odor contribution, and health impacts of NH₃ and VSCs. The results revealed that odor pollution existed in all of the test sites, particularly in the sludge pump room and pre-dehydration workshop. NH₃, H₂S, and methyl mercaptan caused very strong odors, and levels of NH₃ and H₂S were enough to impact the health of on-site employees.
Показать больше [+] Меньше [-]Organic-matter decomposition as a bioassessment tool of stream functioning: A comparison of eight decomposition-based indicators exposed to different environmental changes Полный текст
2021
Ferreira, Verônica | Silva, João | Cornut, Julien | Sobral, Olímpia | Bachelet, Quentin | Bouquerel, Jonathan | Danger, Michael
Organic-matter decomposition has long been proposed as a tool to assess stream functional integrity, but this indicator largely depends on organic-matter selection. We assessed eight decomposition-based indicators along two well-known environmental gradients, a nutrient-enrichment gradient (0.2–1.4 mg DIN/L) in central Portugal and an acidification gradient (pH: 4.69–7.33) in north-eastern France to identify the most effective organic-matter indicator for assessing stream functional integrity. Functional indicators included natural leaf litter (alder and oak) in 10-mm and 0.5-mm mesh bags, commercial tea (Lipton green and rooibos teas in 0.25-mm mesh bags), wood sticks (wood tongue depressors) and cotton strips. Biotic indices based on benthic macroinvertebrates (IPtIN for Portugal and IBGN for France) were calculated to compare the effectiveness of structural and functional indicators in detecting stream impairment and to assess the relationship between both types of indicators. The effectiveness of organic-matter decomposition rates as a functional indicator depended on the stressor considered and the substrate used. Decomposition rates generally identified nutrient enrichment and acidification in the most acidic streams. Decomposition rates of alder and oak leaves in coarse-mesh bags, green and rooibos teas and wood sticks were positively related with pH. Only decomposition rates of rooibos tea and wood sticks were related with DIN concentration; decomposition rates along the nutrient-enrichment gradient were confounded by differences in shredder abundance and temperature among streams. Stream structural integrity was good to excellent across streams; the IPtIN index was unrelated to DIN concentration, while the IBGN index was positively related with pH. The relationships between decomposition rates and biotic indices were loose in most cases, and only decomposition rates of alder leaves in coarse-mesh bags and green tea were positively related with the IBGN. Commercial substrates may be a good alternative to leaf litter to assess stream functional integrity, especially in the case of nutrient enrichment.
Показать больше [+] Меньше [-]