Уточнить поиск
Результаты 2491-2500 из 4,938
Effect of humic acid on the stabilization of cadmium in soil by coprecipitating with ferrihydrite Полный текст
2019
Xu, Miaomiao | Zhao, Zhuanjun | Shi, Miao | Yao, Liwei | Fan, Tianfeng | Wang, Zemin
Coprecipitation of humic acid (HA) with ferrihydrite (Fh) has been proposed to reduce the activity of heavy metals in aqueous solutions. The effect of the amount of HA added to the coprecipitates on the stabilization of Cd in soil is unclear. In this research, five different Fh-HA coprecipitates were synthesized to study the impact of different HA additions on the fractionation of Cd in the soil and the optimal addition ratio of C/Fe. Characterization technique as Fourier transform infrared spectroscopy (FT–IR), X–ray diffraction (XRD), specific surface area analyzer, and scanning electron microscopy (SEM) was used in order to test and analyze of the microstructure and physicochemical property of the coprecipitates. The results showed that the Fh-HA coprecipitate is mainly combined by the coordination exchange of –OH on the surface of the Fh with the carboxyl group of the HA. Adding HA could stabilize Fh and increase its surface roughness. Changes in the fractionation of the Cd were used to evaluate the stabilization effect of the coprecipitate. Before treatment, Cd in different contaminated soils was existed only a small amount of residual fraction. After the addition of the Fh-HA coprecipitate, the proportion of residual Cd in each contaminated soil increased. When the C/Fe ratio was 1.5, the maximum residual fraction were 62.94%, 55.67%, and 52.99% respectively. Residual Cd could remain relatively stable indicating that the Fh-HA coprecipitate is a promising amendment for repairing Cd-contaminated soil. The addition of HA has strengthened the active role of Fh on stabilizing heavy metals.
Показать больше [+] Меньше [-]The effect of single and combined exposures to magnetite and polymorphous silicon dioxide nanoparticles on the human A549 cell line: in vitro study Полный текст
2019
Rafieepour, Athena | Azari, Mansour R. | Khodagholi, Fariba | Jaktaji, Jalal Pourahmad | Mehrabi, Yadollah | Peirovi, Habibollah
The increasing trend of nanoparticle usage in science and technology has led to significant human exposure. Occupational exposure to iron oxides and silica dust has been reported in mining, manufacturing, construction, and pharmaceutical operations. The combined toxicological effects of nanoparticles and simultaneous exposure to other compounds have given rise to a new concern. Hence, the objective of this study was to investigate the toxicological effects of magnetite and polymorphous silicon dioxide nanoparticles in single and combined exposures. The polymorphous silicon dioxide nanoparticles were obtained from the milled quartz particles under 100 nm in diameter. The milled particles were purified through chloric and nitric acid wash processes. The toxic effects of the magnetite nanoparticles were investigated independently and in combination with quartz using the A₅₄₉ cell line for durations of 24 and 72 h, and using diverse concentrations of 10, 50, 100, and 250 μg/mL. MTT, ROS, mitochondrial membrane potential, and cell glutathione content assays were used to evaluate the amount of cell damage in this study. The statistical significance level in one-way ANOVA and independent t test was considered to be at the 5% confidence level. The size and purity of polymorphous silicon dioxide nanoparticles were measured by TEM and ICP-OES analysis, respectively. The particles’ diameters were under 100 nm and demonstrated a purity of higher than 99%. The toxicity results of this study showed a dependency on concentration and exposure duration in reducing the cell viability, cellular glutathione content, and mitochondrial membrane potential, as well as increasing the ROS generation in single and combined exposures with magnetite and polymorphous silicon dioxide nanoparticles. The toxic effects of combined exposure to these nanoparticles were less than the single exposures, and statistically significant antagonistic interactions were detected. Combined exposure to polymorphous silicon dioxide and magnetite nanoparticles, in comparison with their single exposures, could affect health in an antagonistic manner. Since this study has been the first of its kind, further studies investigating the health effects of single and combined exposures to these compounds are needed to verify our findings. Generally, studies such as this one could contribute to the field of combined toxicity effects.
Показать больше [+] Меньше [-]Chemophysical Evaluation of Green Sorption Media for Copper Removal in Stormwater Runoff for Improving Ecosystem and Human Health Полный текст
2019
Valencia, Andrea | Kilner, Jamie | Chang, Ni-Bin | Wanielista, Martin P.
Green sorption media, which includes the utilization of renewable and recycled materials, can be used as a means for nutrient and copper removal in various low-impact development facilities. In this study, a green sorption media mixture consisting of recycled tire chip, expanded clay, and coconut coir was physiochemically evaluated for copper removal potential in stormwater runoff to deepen the understanding of its application potential. Isotherm, reaction kinetics, and life expectancy tests were conducted using both the media mixture and the individual components of the green sorption media. In addition, the media mixture was analyzed to determine its life expectancy. Isotherm test results revealed that the media mixture follows the Freundlich model and that the coconut coir had the highest affinity for copper. Distinct dynamic adsorption models were explored to determine the most suitable model for implementation based on a column test data set. Five dynamic adsorption models, including the Thomas, Clark, Bohart-Adams, Wolborska, and modified dose-response models, were investigated and the media mixture data collected in the column test were fitted into these five models, leading to the selection of the best model with the highest correlation. The modified dose-response model outperformed others in terms of the overall media mixture and the coconut coir. Life expectancy estimation showed that the media mixture has a life span of 2.13 years with the chosen influent conditions and can be applicable for improving the performance of water quality management in stormwater detention and retention ponds, bioswale, and other stormwater best management practices.
Показать больше [+] Меньше [-]Determination of the Kinetic Behavior of Diclofenac in Aqueous Solution by UV Light Radiation Полный текст
2019
Becerril, M. E. | Ramírez-García, J. J. | Cavazos, N. | Serrano, A Ramírez
Diclofenac (DCF) is one of the most widely used non-steroidal anti-inflammatory drugs worldwide, and several studies have reported adverse effects on the environment, in plants and animals; so, it is classified as an emerging pollutant. There are several alternatives for its removal; however, it is necessary to study the way in which the DCF is degrading to offer more effective removal techniques, since the traditional ones such as chlorination, activated sludge, and biofiltration offer low removal efficiency (20–40%). This work analyzes the kinetic behavior of the photodegradation of DCF and the thermodynamic parameters of the reaction under UV-C-type light radiation. The results obtained indicate that it presents a first-order kinetic promoted by the increase of the temperature. Also, within the evaluated interval (273 to 308 K), the values of the kinetic coefficient (k) range between 0.05 and 0.20 min⁻¹ and the half-life ranges from 3 to 9 min. The reaction is exothermic and spontaneous and gives way to the formation of approximately 6 byproducts, being two with the greatest presence and stability. This suggests that its decomposition route occurs through the dechlorination of the molecule and originate compounds known as carbazoles that have been detected in previous works. It was also found that this mixture of byproducts remained after the degradation of the drug, which is released to the environment, so it is necessary to extend a study on its properties and its possible environmental impact.
Показать больше [+] Меньше [-]Start-up of the Simultaneous Nitrification, Anammox, and Denitrification (SNAD) Reactor and Efficacy of a Small Amount of Organic Carbon Полный текст
2019
Liu, Wei | Nasry, Allama Al Naim Bin | Zhao, Jianqiang | Laoyongxay, Huexay | Dai, Wei | Zhao, Qian
In perspective of the issue of how to begin simultaneous nitrification, anammox, and denitrification (SNAD) rapidly, the sequencing batch biofilm reactor (SBBR) was adopted to enrich ammonia-oxidizing bacteria (AOB) and anammox bacteria (AnAOB) rapidly and to inhibit nitrite-oxidizing bacteria (NOB) after three phases (67 days) of culture, and the impacts of different low carbon-nitrogen ratios (COD/N) on denitrification performance of the process were investigated. The results showed that preventing the accumulation of nitrite (NO₂⁻-N) was the key to start SNAD successfully. The removal efficiencies of ammonia nitrogen (NH₄⁺-N) and total nitrogen (TN) in the system can reach more than 99% and 90%, respectively. Corresponding to COD/N = 0, 1 and 2, removal efficiencies of NH₄⁺-N were 99.6%, 99.5%, and 98.5% respectively and removal efficiencies of TN were 93.8%, 97.2%, and 98.1%, respectively; the total nitrogen removal rate (TNRR) was greater than 0.29 kg N m⁻³ day⁻¹. It indicates that the presence of a small amount of COD is beneficial to the denitrification of NO₃⁻-N without affecting the effect of simultaneous nitrification and anaerobic ammonium oxidation, which further improves the efficiency of nitrogen removal. High-throughput sequencing analysis showed that the ratios of AOB, AnAOB, and denitrifying bacteria were 7.3%, 20.1%, and 7.66%, respectively. Candidatus Kuenenia was the only genus of the SNAD reactor with anaerobic ammonium oxidation. AOB, Anammox, and heterotrophic denitrifying bacteria were present in the system, while ammonia oxidation and anaerobic ammonium oxidation played a dominant role in the denitrification process.
Показать больше [+] Меньше [-]Fabrication of novel magnetic graphene oxide nanocomposites for selective adsorption of mercury from aqueous solutions Полный текст
2019
Hosseinzadeh, Hossein | Hosseinzadeh, Soleyman | Pashaei, Shahryar
In this work, a novel functionalized graphene oxide (GO) was used as an effective and selective adsorbent for removal of mercury (Hg²⁺). The magnetic nanocomposite adsorbent (MNA) based on GO was prepared through surface reversible addition–fragmentation chain transfer copolymerization of acrylic monomers and then the formation of Fe₃O₄ nanoparticles. The structure of MNAs was characterized by using FTIR, SEM, TEM, VSM, XRD, and nitrogen adsorption/desorption isotherms. The results of ion adsorption of MNAs demonstrated high selectivity and adsorption efficiency for Hg²⁺ in the presence of competing ions. Furthermore, the removal of Hg²⁺ obeyed a pseudo-second-order model and fitted well to the Langmuir isotherm model with the maximum Hg²⁺ uptake of 389 mg g⁻¹. The MNA was also confirmed as good materials for re-use and maintained 86% of its initial adsorption capacity for mercury after the fifth regeneration cycles. Finally, the experimental results demonstrated that the solution pH, ion concentration, and temperature had a major impact on Hg(II) adsorption capacity. The results indicate that the MNAs with high adsorption abilities could be very promising adsorbents for the selective recovery of ions in wastewater treatment process. Graphical abstract
Показать больше [+] Меньше [-]Characterization of aerosol particles during the most polluted season (winter) in urban Chengdu (China) by single-particle analysis Полный текст
2019
Luo, Jinqi | Huang, Xiaojuan | Zhang, Junke | Luo, Bin | Zhang, Wei | Song, Hongyi
Chengdu, the capital city of Sichuan Province, is one of the most polluted cities in China. We used single-particle aerosol mass spectrometer to monitor particulate matter pollution in an urban area of Chengdu from December 9, 2015 to January 4, 2016 to determine the characteristics of air pollution during the winter months. The mass concentrations of particulate matter were high during the whole observation period, with mean values for PM₂.₅ and PM₁₀ of 101 ± 60 and 162 ± 99 μg m⁻³, respectively. The particles were clustered into nine distinct particle types: dust (3%), potassium-elemental carbon (KEC) (24%), organic carbon (OC) (12%), combined OC and EC (OCEC) (6%), K-organic nitrogen (KCN) (10%), K-nitrate (KNO₃) (12%), K-sulfate (KSO₄) (18%), K-sulfate and nitrate (KSN) (12%), and metal (3%) particles. Analysis on different types of day showed that: (1) from “excellent” (days with PM₂.₅ lower than 35 μg m⁻³) to “light pollution” (PM₂.₅ between 75 and 115 μg m⁻³) days, local/regional combustion was the major contributor, whereas the aggravation of pollution from light pollution to “heavy pollution” (PM₂.₅ higher than 150 μg m⁻³) days was mainly determined by the combined effect of local/regional combustion and long-distance transport; (2) as the air quality deteriorated, the mixing of sulfate and nitrate in particles increased sharply, especially sulfate; and (3) the relative aerosols acidity increased from excellent to light pollution days, while decreased significantly from light pollution to heavy pollution days. Backward trajectory analysis showed that there were significant differences in PM₂.₅ concentrations and particle compositions between clusters of trajectories, which affected the level and evolution of PM₂.₅ pollution in Chengdu. These results give a deeper understanding of PM₂.₅ pollution in Chengdu and the Sichuan Basin.
Показать больше [+] Меньше [-]Distribution of mercury and methylmercury in surface water and surface sediment of river, irrigation canal, reservoir, and wetland in Taiwan Полный текст
2019
Wang, Ying-Lin | Fang, Meng-Der | Chien, Ling-Chu | Lin, Chu-Ching | Hsi, Hsing-Cheng
In Taiwan, because of the co-use of some irrigation and drainage canals, a portion of industrial wastewater was directly discharged into irrigation canals or even flowed into rivers or wetlands, causing the heavy metal pollution in waters and sediments. Mercury (Hg) contamination in rivers, irrigation canals, and wetlands has been found in Taiwan, but a thorough investigation on the distribution of Hg and methylmercury (MeHg) in these waters and sediments, which may be present in a greater level with elevating total Hg (THg) concentration and markedly impact human health, is still lacking. In this study, surface waters and surface sediments were sampled from five major rivers, two irrigation canals, two reservoirs, and one wetland in Taiwan, and their THg and MeHg concentrations were quantified. Additionally, statistical analysis was carried out to understand the relationship between sediment properties and MeHg levels. The results showed that irrigation canal sediments were relatively more polluted by Hg and the THg concentrations of some sampling points exceeded the upper limit (i.e., 0.87 mg kg⁻¹) of sediment quality index (SQI) for THg promulgated by Taiwan Environmental Protection Administration, which may be attributed to the co-use of irrigation and drainage canals. Furthermore, the MeHg concentration in irrigation canal sediments was the highest; rivers came in second followed by wetlands. In addition, the Siangshan Wetland was analyzed to have the greatest THg and MeHg concentrations in its surface water. Linear regression analysis also indicated that total organic carbon and clay content substantially affected the MeHg production in sediments.
Показать больше [+] Меньше [-]An effective treatment method for shale gas drilling cuttings solidified body Полный текст
2019
Liu, Dong-sheng | Wang, Chao-qiang | Mei, Xu-dong | Qian-Huang, | Ding, Shi-min
The exploration and production of shale gas technology provides a way for utilization of clean fuels. However, during the exploration process of shale gas, enormous amount of drilling cutting was generated and had to be solidified and landfilled. So the accumulation of shale gas drilling cutting solidified body (SGDS)causes severe land resource misuse and environmental complications. This study focuses on the utilization of SGDS as a raw material for the production of cement clinker, and the phase composition, microstructure, and environmental performance of the cement clinker was investigated by X-ray powder diffraction (XRD), scanning electronic microscopy (SEM), energy-dispersive X-ray spectrum analysis (EDX), and soaking test, respectively. The results show that the cement clinker obtained mainly constitutes of typical Portland cement mineral (C₃S, C₂S, C₃A, and C₄AF). The leaching test indicated that the concentration of heavy metal ions in leachate is within the limits allowed by the state “Technical specification for co-processing of solid wastes in cement kiln” (GB 30760-2014). This study therefore provides a benchmark on environmental effects resulting from drilling cuttings and utilization of resources.
Показать больше [+] Меньше [-]Performance of Bi2O3/TiO2 prepared by sol-gel on p-Cresol degradation under solar and visible light Полный текст
2019
Vigil-Castillo, Héctor H. | Hernández-Ramírez, Aracely | Guzmán-Mar, Jorge L. | Ramos-Delgado, Norma A. | Villanueva-Rodríguez, Minerva
Photocatalytic degradation of p-Cresol was evaluated using the mixed oxide Bi₂O₃/TiO₂ (containing 2 and 20% wt. Bi₂O₃ referred as TB2 and TB20) and was compared with bare TiO₂ under simulated solar radiation. Materials were prepared by the classic sol-gel method. All solids exhibited the anatase phase by X-ray diffraction (XRD) and Raman spectroscopy. The synthesized materials presented lower crystallite size and Eg value, and also higher surface area as Bi₂O₃ amount was increased. Bi content was quantified showing near to 70% of theoretical values in TB2 and TB20. Bi₂O₃ incorporation also was demonstrated by X-ray photoelectron spectroscopy (XPS). Characterization of mixed oxides suggests a homogeneous distribution of Bi₂O₃ on TiO₂ surface. Photocatalytic tests were carried out using a catalyst loading of 1 g L⁻¹ under simulated solar light and visible light. The incorporation of Bi₂O₃ in TiO₂ improved the photocatalytic properties of the synthesized materials obtaining better results with TB20 than the unmodified TiO₂ under both radiation sources.
Показать больше [+] Меньше [-]