Уточнить поиск
Результаты 261-270 из 501
Total Soluble Protein Mediated Morphological Traits in Mustard Treated with Thiourea and Salicylic Acid
2024
Shipa Rani Dey, Prasann Kumar and Joginder Singh
The total soluble protein-mediated morphological traits in mustard treated with Thiourea and Salicylic acid were investigated. In addition, it tested the hypothesis that the growth regulator salicylic acid protects the photosynthetic apparatus by up-regulating morphological traits. Under natural environmental conditions, seeds were sown in the field, and seed emergence was recorded. For three days after the 15-day stage, plants in the area were treated with thiourea and salicylic acid and allowed to grow for 90 days. Plants were harvested to assess various morphological traits. A follow-up application of SA and Thiourea plants improved plant height, leaf area, internodal length, leaf number, and accelerated plant activity. The up-regulation of morphological traits may have occurred in SA and Thiourea-mediated plants. After treatments, the level of total soluble protein was estimated in the leaves at proposed day intervals.
Показать больше [+] Меньше [-]Experimental Analysis of Anaerobic Co-digestion: Potential of Fruit Wastes
2024
S. Sathish, A. Saravanan, R. Suresh, K. Saranya, R. Sarweswaran, G. Balaji and S. Seralathan
This study focuses on converting fruit waste into usable clean energy by an innovative, cost-effective anaerobic biodigester. The biodigester is designed to anaerobically digest various fruit wastes and starter inoculums of cow dung that are locally obtained. A batch vertical digester of 1000 liters capacity built of fiber with a phonematic agitator positioned in the center is used to improve mixing. The retention time is 30 days with a substrate of banana peels co-digested with mango and papaya peels individually in the ratio of 50:50. The combined wastes generated the biogas and the total quantity of biogas generated for all combined wastes over 21 days varies between 530L/day and 480L/day respectively. In this work, banana and mango peel (waste/water) split 50:50 gives a peak yield of 530L/day. The average ambient temperatures are kept in the range of 25°C to 35°C (i.e., mesophilic range). The pH range of 6.4 to 7.8 is consistently maintained and seems to be stable. Therefore, this proposed anaerobic digester would reduce the disposal of solid waste, and it is cost-effective. After cleaning, it is observed that the combined peels of bananas and papaya contained 91.95% of the estimated biogas and methane, which can be used to solve energy issues such as electricity production and cooking purposes.
Показать больше [+] Меньше [-]The Prostrate Spurge-isolated PGPB Endophytes, EP1-AS, and EP1-BM That Can Tolerate High Levels of Salinity and Heavy Metals and Allow Wheat Growth Under These Stressors
2024
Manisha Parashar and Gaurav Mudgal
This research investigates the potential of two Plant Growth-Promoting Bacteria (PGPB) strains, EP1-AS and EP1-BM, isolated from the halophyte Euphorbia prostrata, to enhance plant growth and provide abiotic stress resilience. The study addresses the urgent need for sustainable agricultural practices in the face of challenges like soil salinization and heavy metal contamination. The investigation comprehensively analyzes the heavy metal and salt tolerance of the PGPB strains, revealing their potential applications in promoting plant growth under adverse environmental conditions. The research further explores the impact of these PGPB strains on wheat plants subjected to varying concentrations of heavy metals and salts. Results indicate that both PGPB strains, especially EP1-BM, exhibit significant tolerance to heavy metals and salt stress. EP1-BM demonstrates remarkable resilience even under high concentrations of these stressors. The study extends its findings to in vitro testing on wheat plants, revealing the positive influence of PGPB strains on germination, shoot length, and root length in the presence of salt and heavy metals. This research underscores the significance of understanding plant-microbe interactions, particularly in the context of promoting sustainable agriculture in challenging environments. The identified resilience of PGPB strains, especially EP1-BM, suggests their potential application as bio-remediators and plant growth promoters in soils affected by salinity and heavy metal stress. The promising results observed will be followed-up field trials. They will highlight the translational potential of these PGPB strains, offering a novel avenue for developing biofertilizer formulations with a cautious approach to safety concerns. Overall, this study contributes valuable insights into harnessing the untapped potential of resilient plants and their associated microbial communities for sustainable agriculture. It addresses key global challenges outlined by the United Nations Sustainable Development Goals.
Показать больше [+] Меньше [-]Moss Bags as Active Biomonitors of Air Pollution: Current State of Understanding, Applications and Concerns
2024
Sriroop Chaudhuri and Mimi Roy
Dual concerns involving the rise in airborne pollutant levels and bulging need to protect-preserve human health have propelled the search for innovative means for air quality monitoring to aid in evidence-based decision-making (pollution prevention-mitigation). In this regard, moss bags have gathered a great deal of attention as active biomonitors. In this reflective discourse, we systematically review the world literature to present a bird’s eye view of moss bag applications and advances while highlighting potential concerns. We begin with a brief note on mosses as biomonitors, highlighting the advantages of moss bags over the passive technique (native moss), other living organisms (lichens, vascular plants), and instrument-based measurements. A major strand of moss bag research involves urban ecosystem sustainability studies (e.g., street tunnels and canyons, parks), while others include event-specific monitoring and change detection (e.g., SARS-CoV-2 Lockdown), indoor-outdoor air quality assessment, and change detection in land use patterns. Recent advances include biomagnetic studies, radioisotopic investigations, and mobile applications. Efforts are currently underway to couple moss bag results with a suite of indicators [e.g., relative accumulation factor (RAF), contamination factor (CF), pollution load index (PLI), enrichment factor (EF)] and spatially map the results for holistic appraisal of environmental quality (hot spot detection). However, while moss bag innovations and applications continue to grow over time, we point to fundamental concerns/uncertainties (e.g., lack of concordance in operational procedures and parameterization, ideal species selection, moss vitality) that still need to be addressed by targeted case studies, before the moss results could be considered in regulatory interventions.
Показать больше [+] Меньше [-]A Novel Coal-Associated Soil as an Effective Adsorbent for Reactive Blue Dye Removal
2024
T. R. Sundararaman, M. Millicent Mabel and G. Carlin Geor Malar
The project aims to remove reactive blue dye from the effluent of textile industries by utilizing coal-associated soil as an adsorbent, as it possesses effective physical properties and distinguishing characteristics. In comparison to other separation techniques, the adsorption method is the most effective, cost-effective, and straightforward. A batch adsorption investigation was carried out to examine the various adsorption-influencing factors, including solution pH, adsorbent dosage, contact time, temperature, and dye concentration. Contact time of 30 min, an adsorbent dosage of 10g.100 mL-1, a solution pH of 7, a temperature of 30°C, and an initial dye concentration of 100 mg.L-1 were found to be optimal for dye adsorption. Using two distinct kinetic models, the evaluation of kinetic studies revealed that the pseudo-second-order provided the greatest fit, with a higher R2 value than the pseudo-first-order. The thermodynamic parameters Gibbs free energy (ΔG°), entropy (ΔS°), and enthalpy (ΔH°) indicated that the current adsorption system was exothermic and spontaneous. Further study of the adsorption isotherm revealed that the Langmuir isotherm model provided the best fit, with an R2 value of 0.977%.
Показать больше [+] Меньше [-]Surface Runoff Estimation Using SCS-CN Method for Kurumballi Sub-watershed in Shivamogga District, Karnataka, India
2024
Govindaraju, T. Y. Vinutha, C. J. Rakesh, S. Lokanath and A. Kishor Kumar
SCS-curve number (CN) is one of the most well-liked and commonly applied methods for estimating surface runoff. The present study aims to calculate surface runoff using SCS-CN watershed-based calculation and geospatial technology in the Kurumballi sub-watershed Shivamogga District of Karnataka, India. The study area covers about an area of 47.67 sq. km. The union of land use/land cover classification with hydrological soil groups (HSG) yields the runoff estimation by the SCS-CN curve approach. This method calculates the runoff volume from the land surface flows into the river or streams. Moreover, the study area’s delineation of runoff potential zones was done using the thematic integration method. Different thematic layers were used, including lithology, geomorphology, soil, slope, land use and land cover, drainage, surface water bodies, groundwater contour, and isohyetal maps. Furthermore, associating it with the SCS-CN technique, the total surface runoff volume of the study area was estimated. The total surface runoff volume in the study area is 21065849.7 m3. To this study, thematic integration with the SCS-CN approach to estimate runoff for watersheds is valuable for improving water management and soil conservation.
Показать больше [+] Меньше [-]Seasonal Variability of Water Quality for Human Consumption in the Tilacancha Conduction System, Amazonas, Peru
2024
Jaris Veneros, Llandercita Cuchca Ramos, Malluri Goñas, Eli Morales, Erick Auquiñivín-Silva, Manuel Oliva and Ligia García
This study evaluated the seasonal variability of water quality in the Tilacancha River, the water source that supplies Chachapoyas, and the rural communities of Levanto and San Isidro del Maino of Perú. Eighteen physical, chemical, and microbiological water parameters were evaluated at five sampling points in two seasons (rainy and dry). To determine water quality, the results obtained for the parameters evaluated were compared with the Maximum Permissible Limits (MPL) established in the Regulation on Water Quality for Human Consumption (DS Nº 031-2010-SA), approved by the Environmental Health Directorate of the Ministry of Health. In addition, a Pearson correlation was performed to estimate the correlation between the variables evaluated. The results showed that microbiological parameters exceeded the MPLs in both periods evaluated, such as the case of total coliforms (44 MPN.100 mL-1), fecal coliforms (25 MPN.100 mL-1), and E. coli (5.45 MPN.100 mL-1), these microbiological parameters reported a positive correlation with turbidity, temperature, total dissolved solids, and flow rate. In addition, aluminum (Al) and manganese (Mn) exceeded the MPL in the rainy (0.26 mg Al.L-1) and dry (1.41 mg.Mn-1.L-1) seasons, respectively. The results indicated that the water of the Tilacancha River is not suitable for human consumption. Therefore, it must be treated in drinking water treatment plants to be used as drinking water.
Показать больше [+] Меньше [-]Biodegradation of Cellulosic Wastes and Deinking of Colored Paper with Isolated Novel Cellulolytic Bacteria
2024
Jyoti Sarwan, Jagadeesh Chandra Bose, Shivam Kumar, Shruti Singh Bhargav, Sharad Kumar Dixit, Muskan Sharma, Komal Mittal, Gurmeet Kumar and Nazim Uddin
Biofuels are the cheapest source of energy, and the continuous decline of traditional sources of energy with the increasing population leads to looking for alternatives to reduce the consumption of traditional sources of energy. Bioethanol production from lignocellulosic wastes and cellulosic wastes is not a new approach for fuel production but a cheap and accessible way for the production of fuel. Bacillus is one of the major species that can act as a source of diversified enzymes. In this study, it was emphasized on screening and isolation of a novel, characterization, and best catalytic action on both celluloses and proteins in the presence of different carbon and nitrogen sources. It was observed the effective catalytic breakdown of cellulose with the crude enzyme to glucose allowed fur for fermentation with Saccharomyces, ultimately leading to the generation of alcohol. The study aims to isolate the microbes that can produce cellulases and enzymes and could be used for biodegradation to produce ethanol in the reaction. The maximum enzyme activity was achieved at 3.112 UI with optimized pH and temperature, and the maximum conversion of sugars into alcohol was about 70% in the newspaper, cartons, colored paper, and disposable paper cups. An essential observation was the decolorization of the origami craft paper within 24 hours. The study was involved in enhancing the maximum Enzyme activity of cellulases from different cellulosic raw materials. Hence, it was achieved by JCB strain, optimization of pH, temperature, and acids for the biodegradation. The presence of peaks at 3200 and 2900 was a confirmation of ethanol bonds in the biodegradation reaction mixtures.
Показать больше [+] Меньше [-]Application of Random Forest in a Predictive Model of PM10 Particles in Mexico City
2024
Alfredo Ricardo Zárate Valencia and Antonio Alfonso Rodríguez Rosales
Over time, predictive models tend to become more accurate but also more complex, thus achieving better predictive accuracy. When the data is improved by increasing its quantity and availability, the models are also better, which implies that the data must be processed to filter and adapt it for initial analysis and then modeling. This work aims to apply the Random Forest model to predict PM10 particles. For this purpose, data were obtained from environmental monitoring stations in Mexico City, which operates 29 stations of which 12 belong to the State of Mexico. The pollutants analyzed were CO carbon monoxide, NO nitrogen oxide, and PM10 particulate matter equal to or less than 10 μg.m-3, NOx nitrogen oxide, NO2 nitrogen dioxide, SO2 sulfur dioxide, O3 ozone, and PM2.5 particulate matter equal to or less than 2.5 μg.m-3. The result was that when calculating the certainty of our model, we have a value of 80.40% when calculating the deviation from the mean, using 15 reference variables.
Показать больше [+] Меньше [-]Study on the Technology of Ultrasonic, Chemical and Mechanical Combined Treatment of Oilfield Aging Oil
2024
Le Zhang, Jin Hu, Longlong Yan, Si Chen, Yabin Jin, Huan Zhang, Zhe Shen and Tao Yu
Aging oil is a common pollutant in petrochemical enterprises due to its severe emulsification and flocculation, poor settling performance, low oil recovery rate, and high difficulty in treatment. This article adopts the method of mechanical, ultrasonic, and chemical coupling demulsification to treat aging oil, with the water content and oil recovery rate of the treated aging oil as the inspection indicators. The experiment shows that when the oil-water ratio is 1:4, the heating temperature is 50℃, the stirring speed is 180rpm, the ultrasonic frequency is 25kHz, the power is 40W, the ultrasonic time is 25min, and the pH is adjusted to 3-4. The additional amount of FeSO4 is 160mg/L, the additional amount of H2O2 is 0.11%, and the heating stirring reaction is 40min. When the dosage of cationic PAM with an ion degree of 50 is 35mg/L, the centrifugation speed is 3200rpm. The centrifugation time is 20 min, the crude oil recovery rate after aging oil treatment can reach over 94.6%, and the water content of the treated crude oil is less than 0.5%, meeting the standards for crude oil gathering and transportation in China. The oil content in the water generated after aging oil treatment is about 150 mg.L-1, the suspended solids content is 200 mg.L-1, the oil content in the residue is 6%, and the water content is 53%. By analyzing the appearance of aging oil before and after treatment, it was found that when using this process to treat aging oil, the original spatial cross-linking network structure of the aging oil was broken, allowing the water droplets wrapped in the oil to be released, thereby significantly reducing the water content in the recovered oil and improving the oil recovery rate.
Показать больше [+] Меньше [-]