Уточнить поиск
Результаты 261-270 из 401
Knowledge, Attitude, and Practices on Climate Change Among Rice Farmers in Central Luzon, Philippines
2024
E. N. Farin, R. R. Sazon, R. A. Sazon, D. V. Rogayan Jr., K. B. Manglicmot, S. G. Mendoza and E. M. Cabal
The Philippines has been listed as the topmost affected country by climate change. One of the sectors affected by this climatic change is the agricultural sector. This study aimed to document the knowledge, attitude, and practices (KAPs) on climate change among rice farmers as a baseline study in disseminating the practices on disaster risk reduction management to rice farmers in Central Luzon to reduce risks and improve the rice yield and income of rice farmers. A total of 969 respondents were randomly sampled from the seven provinces of Central Luzon. A survey questionnaire and an unstructured questionnaire were used as instruments in gathering the needed data. Descriptive and thematic analysis were used in analyzing the data. Results revealed that rice farmers are knowledgeable and have favorable attitudes toward the impact of climate change on farming. They sometimes practice climate-smart agricultural practices. Generally, the farmers are affected by weather and climatic conditions as well as the hazards that cause a reduction in rice yield. Climate change has affected farmers in their social well-being, economic aspect, and rice production. In terms of climate change disaster adaptation measures, the farmers sometimes adopt measures in terms of flood and drought and seldom adopt measures in typhoons, erosion, and volcanic eruptions. The study recommends the conduct of capability training on disaster risk reduction in rice production (such as early planting and planting of high-yielding varieties) based on the specific needs of each province.
Показать больше [+] Меньше [-]Determination of Mycotoxigenic Fungi and Total Aflatoxins in Stored Corn from Sites of Puebla and Tlaxcala, Mexico
2024
K. Saez-Gomez, R. Avila-Sosa, M. Huerta-Lara, F. Avelino-Flores and R. Munguia-Pérez
This paper aimed to evaluate the contamination with mycotoxigenic fungi and total aflatoxins in stored corn from different sites in Puebla and Tlaxcala, Mexico. Methodology. The study was conducted at two sites in Puebla (San Salvador El Seco and Junta Auxiliar La Resurrección) and two sites in Tlaxcala (Tlaltepango and Nativitas). A total of 80 samples of stored corn were collected. Identification of Aspergillus flavus was performed by microculture techniques and specific taxonomic keys (macromorphological and micromorphological). Then, samples of contaminated corn were selected, and aflatoxin production was confirmed using a direct solid-phase ELISA kit. A total of 25 A. flavus strains were identified. Other possible mycotoxin-producing fungi were Penicillium (n=52) and Fusarium (n=19). Regarding total aflatoxin contamination, all samples were contaminated within a range of 1.589 to 11.854 μg/kg, and the average concentration was 6.3 μg/kg corn. Implications. The detection of mycotoxigenic fungi in the samples tested and of aflatoxins in corn highlights the importance of monitoring these fungi. Since food safety is at risk, it shows the need for methods to control these fungi and their metabolites.
Показать больше [+] Меньше [-]Competitive Adsorption of Cd(II) and Zn(II) on Biochar, Loess, and Biochar-loess Mixture
2024
Y. W. Li, B. W. Zhao, L. Wang, Y. Q. Li, T. Wang, Y. H. Jia and M. L. Zhao
Combined heavy metal contamination in soil is a common phenomenon. Biochar amendment into the soil is considered to be an alternative for immobilization remediation of soil contaminated with heavy metals due to its adsorption and alkalization. However, much attention has been paid to the adsorption and immobilization of single heavy metals by biochar. In this paper, the competitive adsorption of Cd(II) and Zn(II) on biochar derived from cotton straw and pig manure at 500℃ (BCS500 and BPM500), loess and biochar-loess mixtures were investigated using the batch equilibrium method. The results showed that the adsorption capacities of biochars, loess, and biochar-loess mixtures to Cd(II) and Zn(II) in the mixed Cd-Zn systems increased with the increase of initial metal concentrations of Cd(II) and Zn(II). The adsorptive capacities of BCS500 and BPM500 to Cd(II) in mixed Cd-Zn system were 33% and 35% less than those in the single Cd(II)systems, while the adsorptive capacities to Zn(II) were 62% and 56% less than those in the single Zn(II) systems. The adsorptive capacities of loess to Cd(II) and Zn(II) in mixed Cd-Zn systems were 29% and 55% less than those in the single metal systems. The adsorptive capacities of loess-BCS500 (LBCS) and loess-BPM500 (LBPM) to Cd(II) in mixed Cd-Zn system were 40% and 38% less than those in the single Cd(II) systems, while the adsorptive capacities to Zn(II) were 63% and 60% less than those in the single Zn(II)systems. Moreover, the competitive adsorptive capacity of Cd(II) is greater than that of Zn(II). It can be seen that when heavy metal pollution with similar nature of multiple elements exists in soil, the amount of adsorbent should be increased to resist the possible weakened adsorption caused by competitive adsorption in order to guarantee an effective absorption treatment.
Показать больше [+] Меньше [-]Impact of Small Anaerobic Digester on Household Economy of Bangladeshi Livestock Farmers
2024
N. Sultana, J. S. Khanam, K. S. Huque, B. K. Roy, N. Huda and M. K. Alam
An extensive survey was performed covering all the regions of the country to find out the overall impacts of bio-digester on the economy of livestock farmers. Five districts were selected; ten farmers with having bio-digester of 3.2 m3 on average and ten farmers who have no bio-digester were selected from each district. Through direct interviewing and farm monitoring, all farm characteristics, i.e., diurnal biogas production, power generation, cooking time, income and expenditures, farmer’s gross earnings, and manure management practices data were collected accordingly. Descriptive statistics and student t-test was made to express the comparison response of the farms by using XL and SPSS software. It was observed that the owners of anaerobic digesters earned significantly (p < 0.001) more than the traditional farmers by selling animals and biogas (1715 & 306; 1146 & 0.00 USD, respectively). Not only that, by selling milk and fresh manure, the owners of bio-digester harvested more (p < 0.05) annual income than non-bio-digester farmers (4162, 3408 & 60.91, 44.63 USD, respectively). Though the expenditure of farmers having digester was high, but in a single fiscal year, they earned more (p < 0.05) profit than the conventional farmers (USD 4329 & 2842, respectively). However, owners of bio-digester used 67.2 % of their produced manure for gas production. Regarding storing manure as biomass and using it for cooking purposes significant difference (p < 0.001) was observed that was also reflected in the total manure management system of a farm. The farmers having no bio-digester stored 71.95% of their total manure in solid form, whereas the farmers who had bio-digester only stored 20.4% of their manure, which made a significant (p < 0.001) difference. From the biogas chamber, in an average one farmer used a gas stove for 4-5 hours and a gas lamp for 6-8 hours, which saved at least the expenditure of 18 USD per month/household. The notable thing was that the bio-digester alone contributed 7% to those farmers’ gross economy by producing gas. It can be recommended that the rural householders could generate power by installing bio-digester and turn a small bio-digester as a beneficial avenue of their household economy.
Показать больше [+] Меньше [-]Effect of Humic Acid Fertilizer on Mercury Release from Greenhouse Soils
2024
Z. Zhao, L. Y. Long, H. Gu and R. G. Sun
The elemental mercury (Hg0) release characteristics from the Hg-contaminated soil applied with Humic acid fertilizer (HAF) in the greenhouse were identified. The adsorption features of mercuric ion (Hg2+) on HAF under different reaction times and pH were investigated to elucidate the influencing mechanism of HAF on soil Hg0 release. Besides, the microstructure of HAF loading with Hg2+ was characterized by using Fourier transform infrared spectroscopy (FTIR) and scanning electron micrograph-energy dispersive spectrometry–EDS). The results showed that with the increasing HAF dosage, soil oxidation-reduction potential (Eh), and organic matter (SOM) content, as well as the decreasing soil pH, the soil Hg0 release fluxes showed a decreasing tendency. The soil pH, Eh, SOM, and total Hg content are the key factors that can affect the soil Hg0 release fluxes. The interior air temperature, light intensity, soil moisture, and soil temperature have little impact on soil Hg0 release fluxes when the greenhouse soil is applied with HAF. The HAF can immobilize Hg2+ and reduce its activity by surface precipitation and specific adsorption, then affecting the soil Hg0 release fluxes. The results of this study provide a basis for the application of HAF to reduce soil Hg0 release fluxes in the greenhouse of Hg-contaminated areas.
Показать больше [+] Меньше [-]An Overview of the Need for Circular Economy on Electric Vehicle Batteries
2024
S. Padmanabhan, C. Joel, S. Mahalingam, J. R. Deepak, T. Vinod Kumar and Deborah Raj
Batteries are a widely utilized and simple method for powering electronic devices, particularly given the prevalence of individuals traveling to all gadgets. The escalating adoption of electric vehicles and portable electronic devices has led to a surge in the demand for lithium-ion batteries. Consequently, this has given rise to supply uncertainties in acquiring essential minerals such as lithium and cobalt, along with concerns about the proper disposal of dead batteries. The existing methods for battery recycling exhibit variations based on the individual chemistries of the batteries, hence influencing both cost factors and greenhouse gas emissions. Simultaneously, there exists a possibility for repurposing depleted batteries for low-tier energy storage applications. The absence of legislation pertaining to the secure storage and handling of waste streams contributes to the accumulation of refuse in exposed environments and the release of hazardous substances from landfills. In addition, contemporary battery manufacturing methods necessitate the utilization of innovative substances, such as ionic liquids for electrolytes and nanostructures for cathodes, to enhance the energy characteristics and longevity of batteries. The presence of uncertainties regarding the accurate assessment of the environmental consequences associated with novel battery chemicals has the potential to impede efforts aimed at recycling and containment. The objective of this analysis is to consolidate the existing knowledge regarding battery pollutants, both those that are recognized and those that remain uncertain, and to assess their potential environmental impacts. Additionally, this research aims to examine the current strategies and methods employed for the recycling of batteries in the circular economy.
Показать больше [+] Меньше [-]An Eco-friendly Mangifera indica Leaves Extract Corrosion Inhibitor for Stainless Steel in Acidic Medium
2024
Dharampal Bajaj and Pratiksha D. Khurpade
Corrosion of metals and alloys is one of the most frequent problems encountered in chemical and process industries. Inefficient corrosion control measures typically lead to an increased risk of unplanned downtime, huge economic loss, environmental damage, and health and safety hazards. Hence, it is essential to develop environment-friendly and cost-effective corrosion inhibitors over existing toxic anticorrosive agents. The main objective of this work is to examine the efficacy of eco-friendly ethanolic extract of Mangifera indica leaves (MIL) in different concentrations as a green corrosion inhibitor for stainless steel (SS-316L) under an acidic environment. The inhibition efficiency of Mangifera indica leaves extract in 1 M hydrochloric acid (HCl) was evaluated by conventional weight loss method along with adsorption isotherm analysis. Chemical compounds present in leaf extract and changes in surface morphology of SS-316L samples were assessed using Fourier Transform Infrared spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FE-SEM) provided with elemental analysis. The results of the weight loss method revealed that the inhibition efficiency increases with increasing MIL extract concentration due to higher surface coverage. The highest inhibition efficiency of almost 63.43% in 14 days and minimum corrosion rate of 0.433 mm per year was obtained for SS-316 L in 1.0 M HCl with 1000 ppm concentration. The adsorption of MIL extract on SS-316L surface followed Freundlich adsorption isotherm, and the obtained value of free Energy of adsorption (ΔG˚ads = – 9.20 kJ.mol-1) indicates the physical adsorption mechanism. The developed regression-based models can predict the corrosion rate as a function of inhibitor concentration and exposure time with good accuracy (>80%). Thus, the present findings demonstrate that Mangifera indica L. leaves extract can suitably be applied as an inexpensive, non-toxic, biodegradable, efficient green corrosion inhibitor for the protection of stainless steel in acidic media.
Показать больше [+] Меньше [-]Effective Utilization of Bio and Industry Wastes to Produce Thermal Insulation Concrete: A Novel Solution for Energy-Saving Buildings
2024
Jerlin Regin, Maria Rajesh Antony, Raya Said Mohammed Al-Zaabiya, May Darwish Ali Al Balushi, Hamdah Ali Ahmed Al Shehhi, Nooralsnaa Abdallah Mohammed Al-Farsi and Athari Khalifa Handi Al-Saadi
The research addressed the effective and sustainable ways to enhance the thermal insulation properties of concrete without compromising its structural integrity. Traditional methods of enhancing thermal insulation in buildings, such as using thick layers of insulation materials, can be costly and may not always be practical in certain settings. Additionally, the disposal of waste materials such as date palm fiber, shopping plastic bags, and thermocol beads presents an environmental challenge. Therefore, this study aims to investigate the potential use of these waste materials as additives in concrete to improve its thermal insulation properties while also providing a sustainable solution for waste disposal. Date palm fiber is a natural material that is widely available in the Gulf region. Plastic bags are a huge waste from the shops every day, and from the packing materials, this thermocol is a huge waste product. We have to recycle it very efficiently to protect the environment. Three types of special materials, such as thermocol beads (30%), date palm fiber (3%) & shopping plastic bag fiber (3%), were tested in this research. Thermocol beads, when used, reduce their strength and increase the thermal resistance of concrete, while date palm fiber and shopping bag waste fiber, when used, increase the strength of concrete and also increase the thermal resistance of concrete, so it is an excellent reinforcing material and thermal barrier for shopping plastic bags fiber and date palm fiber. Based on this research result, when thermocol beads are used, they prevent heat by 42 percent, while when added with date palm fiber and plastic fiber, they also block heat by an average of 30% percent; thus, all three ingredients are considered excellent thermal insulation material. The reduction in thermal conductivity was attributed to the formation of air voids and the low thermal conductivity of the waste materials. The density of the concrete decreased with the addition of the waste materials. The study suggests that the incorporation of date palm fiber, shopping bag waste fiber, and thermocol beads can be an effective way to enhance the thermal insulation properties of concrete while also providing an environmentally sustainable solution for waste disposal. It will boost green energy technology in the construction industry.
Показать больше [+] Меньше [-]Mapping and Quantifying Integrated Land Degradation Status of Goa Using Geostatistical Approach and Remote Sensing Data
2024
V. G. Prabhu Gaonkar, F. M. Nadaf and Vikas Kapale
Globally, land degradation is becoming a grave concern. Over the years, conditions such as drought, extreme weather events, pollution, changes in land use land cover, and desertification have intensified and led to land degradation, affecting both ecological and economic processes. Equally, during the last two centuries, population and urbanization have amplified manifold and increased the demand for additional food and shelter, resulting in alteration in land use land cover, over-grazing, and over-cultivation, loss of nutrient-rich surface soil, greater runoff from the more impermeable subsoil, and reduced water availability. Geographically, Goa is a highly diversified state. It is sandwiched between the West Coast and the Western Ghats. The state is blessed with beaches, mangroves, backwaters, wetlands, wildlife sanctuaries, evergreen forests, barren lands, and other vital ecosystems. The State of Goa, on average, receives more than 3000 millimeters of rainfall annually with high surface runoff. Using both primary and secondary data, this study sought to investigate and quantify the state’s land degradation. Secondary data came from satellites and other sources, while primary data came from field observation and ground truthing. Land degradation factors related to soil loss and the spatial pattern of soil erosion are predicted and evaluated using the Revised Universal Soil Loss Equation (RUSLE) method. Landsat-8 OLI-TIRS images were utilized to decide land use and cover (C factor), while DEM information was utilized to assess (LS factor). A soil map and rainfall data were collected to acquire a better understanding of soil erodibility (K factor) and rainfall erosivity (R factor). The kriging interpolation technique was used to gain a deeper comprehension of land degradation.The purpose of this paper is to comprehend the concept of integrated land degradation and how it affects the environment of Goa. Using remote sensing data and geostatistical methods, the study creates a comprehensive map of land degradation in the region by identifying and analyzing the various forms of land degradation in Goa. The paper also looks at how rainfall and the amount of land cover affect the rate of soil erosion in Goa. According to the findings, intense rainfall makes the eastern part of Goa particularly susceptible to soil erosion, and bare soil has a greater potential for erosion than vegetated land. The paper concludes that comprehensive land degradation mapping can be a useful tool for developing efficient land management strategies to preserve soil and encourage sustainable development in the region.
Показать больше [+] Меньше [-]Analysis and Characterization of Municipal Solid Wastes Generated in Ifugao State University Potia Campus: A Basis For Planning of Waste Management
2024
P. Latugan, J. J. Carabacan, G. Bonicillo, J. Cayog, M. Q. Eyawa, M. T. Cairel and J. M. Ngohayon
The end of the COVID-19 pandemic resulted in the total return of students and employees in Ifugao State University Potia Campus, a higher education institution located in Potia, Alfonso Lista, Ifugao, Philippines. However, the return of the pre-pandemic operations on campus caused problems in managing the generated municipal solid wastes. Hence, an analysis and characterization of the generated municipal solid wastes was conducted to determine important data that can be used for future waste management planning. The generated municipal solid wastes were gathered from the various waste generators within the campus for five consecutive days. The total generated municipal solid waste on the campus was about 140.10 kg.day-1, most of which was contributed by the canteens (20.86%). The generated municipal solid wastes were dominated by biodegradable waste (48.65%) and recyclable waste (37.26%). In addition, most of the generated municipal solid wastes were related to people’s food and beverage consumption behavior. The total volume of the MSW generated daily was about 5.647 m3. It is recommended that the campus create and enforce its waste management plan to specifically address the aforementioned characteristics of the generated municipal solid wastes.
Показать больше [+] Меньше [-]