Уточнить поиск
Результаты 261-270 из 560
A Novel Coal-Associated Soil as an Effective Adsorbent for Reactive Blue Dye Removal
2024
T. R. Sundararaman, M. Millicent Mabel and G. Carlin Geor Malar
The project aims to remove reactive blue dye from the effluent of textile industries by utilizing coal-associated soil as an adsorbent, as it possesses effective physical properties and distinguishing characteristics. In comparison to other separation techniques, the adsorption method is the most effective, cost-effective, and straightforward. A batch adsorption investigation was carried out to examine the various adsorption-influencing factors, including solution pH, adsorbent dosage, contact time, temperature, and dye concentration. Contact time of 30 min, an adsorbent dosage of 10g.100 mL-1, a solution pH of 7, a temperature of 30°C, and an initial dye concentration of 100 mg.L-1 were found to be optimal for dye adsorption. Using two distinct kinetic models, the evaluation of kinetic studies revealed that the pseudo-second-order provided the greatest fit, with a higher R2 value than the pseudo-first-order. The thermodynamic parameters Gibbs free energy (ΔG°), entropy (ΔS°), and enthalpy (ΔH°) indicated that the current adsorption system was exothermic and spontaneous. Further study of the adsorption isotherm revealed that the Langmuir isotherm model provided the best fit, with an R2 value of 0.977%.
Показать больше [+] Меньше [-]Surface Runoff Estimation Using SCS-CN Method for Kurumballi Sub-watershed in Shivamogga District, Karnataka, India
2024
Govindaraju, T. Y. Vinutha, C. J. Rakesh, S. Lokanath and A. Kishor Kumar
SCS-curve number (CN) is one of the most well-liked and commonly applied methods for estimating surface runoff. The present study aims to calculate surface runoff using SCS-CN watershed-based calculation and geospatial technology in the Kurumballi sub-watershed Shivamogga District of Karnataka, India. The study area covers about an area of 47.67 sq. km. The union of land use/land cover classification with hydrological soil groups (HSG) yields the runoff estimation by the SCS-CN curve approach. This method calculates the runoff volume from the land surface flows into the river or streams. Moreover, the study area’s delineation of runoff potential zones was done using the thematic integration method. Different thematic layers were used, including lithology, geomorphology, soil, slope, land use and land cover, drainage, surface water bodies, groundwater contour, and isohyetal maps. Furthermore, associating it with the SCS-CN technique, the total surface runoff volume of the study area was estimated. The total surface runoff volume in the study area is 21065849.7 m3. To this study, thematic integration with the SCS-CN approach to estimate runoff for watersheds is valuable for improving water management and soil conservation.
Показать больше [+] Меньше [-]Seasonal Variability of Water Quality for Human Consumption in the Tilacancha Conduction System, Amazonas, Peru
2024
Jaris Veneros, Llandercita Cuchca Ramos, Malluri Goñas, Eli Morales, Erick Auquiñivín-Silva, Manuel Oliva and Ligia García
This study evaluated the seasonal variability of water quality in the Tilacancha River, the water source that supplies Chachapoyas, and the rural communities of Levanto and San Isidro del Maino of Perú. Eighteen physical, chemical, and microbiological water parameters were evaluated at five sampling points in two seasons (rainy and dry). To determine water quality, the results obtained for the parameters evaluated were compared with the Maximum Permissible Limits (MPL) established in the Regulation on Water Quality for Human Consumption (DS Nº 031-2010-SA), approved by the Environmental Health Directorate of the Ministry of Health. In addition, a Pearson correlation was performed to estimate the correlation between the variables evaluated. The results showed that microbiological parameters exceeded the MPLs in both periods evaluated, such as the case of total coliforms (44 MPN.100 mL-1), fecal coliforms (25 MPN.100 mL-1), and E. coli (5.45 MPN.100 mL-1), these microbiological parameters reported a positive correlation with turbidity, temperature, total dissolved solids, and flow rate. In addition, aluminum (Al) and manganese (Mn) exceeded the MPL in the rainy (0.26 mg Al.L-1) and dry (1.41 mg.Mn-1.L-1) seasons, respectively. The results indicated that the water of the Tilacancha River is not suitable for human consumption. Therefore, it must be treated in drinking water treatment plants to be used as drinking water.
Показать больше [+] Меньше [-]Biodegradation of Cellulosic Wastes and Deinking of Colored Paper with Isolated Novel Cellulolytic Bacteria
2024
Jyoti Sarwan, Jagadeesh Chandra Bose, Shivam Kumar, Shruti Singh Bhargav, Sharad Kumar Dixit, Muskan Sharma, Komal Mittal, Gurmeet Kumar and Nazim Uddin
Biofuels are the cheapest source of energy, and the continuous decline of traditional sources of energy with the increasing population leads to looking for alternatives to reduce the consumption of traditional sources of energy. Bioethanol production from lignocellulosic wastes and cellulosic wastes is not a new approach for fuel production but a cheap and accessible way for the production of fuel. Bacillus is one of the major species that can act as a source of diversified enzymes. In this study, it was emphasized on screening and isolation of a novel, characterization, and best catalytic action on both celluloses and proteins in the presence of different carbon and nitrogen sources. It was observed the effective catalytic breakdown of cellulose with the crude enzyme to glucose allowed fur for fermentation with Saccharomyces, ultimately leading to the generation of alcohol. The study aims to isolate the microbes that can produce cellulases and enzymes and could be used for biodegradation to produce ethanol in the reaction. The maximum enzyme activity was achieved at 3.112 UI with optimized pH and temperature, and the maximum conversion of sugars into alcohol was about 70% in the newspaper, cartons, colored paper, and disposable paper cups. An essential observation was the decolorization of the origami craft paper within 24 hours. The study was involved in enhancing the maximum Enzyme activity of cellulases from different cellulosic raw materials. Hence, it was achieved by JCB strain, optimization of pH, temperature, and acids for the biodegradation. The presence of peaks at 3200 and 2900 was a confirmation of ethanol bonds in the biodegradation reaction mixtures.
Показать больше [+] Меньше [-]Application of Random Forest in a Predictive Model of PM10 Particles in Mexico City
2024
Alfredo Ricardo Zárate Valencia and Antonio Alfonso Rodríguez Rosales
Over time, predictive models tend to become more accurate but also more complex, thus achieving better predictive accuracy. When the data is improved by increasing its quantity and availability, the models are also better, which implies that the data must be processed to filter and adapt it for initial analysis and then modeling. This work aims to apply the Random Forest model to predict PM10 particles. For this purpose, data were obtained from environmental monitoring stations in Mexico City, which operates 29 stations of which 12 belong to the State of Mexico. The pollutants analyzed were CO carbon monoxide, NO nitrogen oxide, and PM10 particulate matter equal to or less than 10 μg.m-3, NOx nitrogen oxide, NO2 nitrogen dioxide, SO2 sulfur dioxide, O3 ozone, and PM2.5 particulate matter equal to or less than 2.5 μg.m-3. The result was that when calculating the certainty of our model, we have a value of 80.40% when calculating the deviation from the mean, using 15 reference variables.
Показать больше [+] Меньше [-]Study on the Technology of Ultrasonic, Chemical and Mechanical Combined Treatment of Oilfield Aging Oil
2024
Le Zhang, Jin Hu, Longlong Yan, Si Chen, Yabin Jin, Huan Zhang, Zhe Shen and Tao Yu
Aging oil is a common pollutant in petrochemical enterprises due to its severe emulsification and flocculation, poor settling performance, low oil recovery rate, and high difficulty in treatment. This article adopts the method of mechanical, ultrasonic, and chemical coupling demulsification to treat aging oil, with the water content and oil recovery rate of the treated aging oil as the inspection indicators. The experiment shows that when the oil-water ratio is 1:4, the heating temperature is 50℃, the stirring speed is 180rpm, the ultrasonic frequency is 25kHz, the power is 40W, the ultrasonic time is 25min, and the pH is adjusted to 3-4. The additional amount of FeSO4 is 160mg/L, the additional amount of H2O2 is 0.11%, and the heating stirring reaction is 40min. When the dosage of cationic PAM with an ion degree of 50 is 35mg/L, the centrifugation speed is 3200rpm. The centrifugation time is 20 min, the crude oil recovery rate after aging oil treatment can reach over 94.6%, and the water content of the treated crude oil is less than 0.5%, meeting the standards for crude oil gathering and transportation in China. The oil content in the water generated after aging oil treatment is about 150 mg.L-1, the suspended solids content is 200 mg.L-1, the oil content in the residue is 6%, and the water content is 53%. By analyzing the appearance of aging oil before and after treatment, it was found that when using this process to treat aging oil, the original spatial cross-linking network structure of the aging oil was broken, allowing the water droplets wrapped in the oil to be released, thereby significantly reducing the water content in the recovered oil and improving the oil recovery rate.
Показать больше [+] Меньше [-]Experimental Investigations on the Effect of Pretreatment in Anaerobic Digestion of Coir Pith Agro Waste
2024
Smitha Krishna Warrier and P. Sindhu
The coir industry in India’s southern coastal regions, especially in the state of Kerala, is becoming increasingly concerned about the environmental impact of the accumulation and incremental increase of coir pith each year. The objective of this study was to assess the effect of pretreatment on the anaerobic digestion of coir pith. The characterization study of coir pith shows high organic content, which can be anaerobically digested to produce biogas. But, the high lignin content (30.91%) makes the process slow. To overcome this, a biological pretreatment method was tried using two microbial cultures belonging to fungal genera known to be lignin decomposers, viz., Trichoderma and Pleurotus. By using Trichoderma, lignin content was reduced by 3.7%, and the maximum gas production was obtained in a shorter time (19 days) in comparison with the sample without any pretreatment (24 days). When Pleurotus was used for lignin degradation, the lignin content was reduced by 6.78%, and the maximum gas production was obtained in a much shorter time period (14 days) in comparison with the former two methods. The gas produced comprises 74 ppm of methane, which has fuel value. The sludge after digestion was tested, which indicated a marginal increase in NPK value and hence can be used as fertilizer. The results of the study appear to be quite promising in the transition towards green energy by providing scope for the process of biomethanation, with the conclusion that further research can transform coir pith into a good renewable energy resource.
Показать больше [+] Меньше [-]Removal of Nickel from Industrial Wastewater by an Agro-based Composite Adsorbent
2024
R. M. Bhagat and S. R. Khandeshwar
For many years, especially in emerging nations like India, the environment has been threatened by the increased output of industrial wastes and heavy metal toxicity. The usage of inexpensive adsorbents has recently attracted a lot of attention in studies on the removal of heavy metals like nickel from industrial wastewater. The use of agro-based adsorbent is an alternative to conventionally used activated charcoal. In this research, adsorption experiments were carried out using agro-based adsorbent prepared from rice husk, wheat husk, and soybean husk to reduce nickel from industrial wastewater. The adsorption process is simple, economical, and effective is the most preferred method used for the removal of toxic metals like nickel from industrial wastewater. Adsorbents prepared from these husks can be effectively used for adsorption due to low cost & high availability. Characterization of agricultural material by various tests like XRF, proximate analysis, bulk density, and iodine number was conducted on agro-based adsorbents to know the co-relation between removal efficiency and adsorption capacity. The effect of turbidity and pH parameters on Ni removal efficiency is also studied. Results indicated that wheat husk adsorbent appeared to be the most effective for the adsorption of Ni from wastewater as compared to soybean husk and rice husk adsorbent. Wheat husk, soybean husk, and rice husk have removal efficiency in the range of 62.50 to 73.33. Composite absorbents CA-2 with the proportion of 50% wheat husk, 33% soybean husk, and 17% rice husk have 82.50% efficiency, and CA-3 has 80.83% efficiency in removing Nickel. Wheat husk adsorbent, CA-2, and CA-3 are more effectively and sustainably used for the treatment of industrial wastewater to remove heavy metals.
Показать больше [+] Меньше [-]Enhanced Solar Photovoltaic Power Production Approach for Electric Vehicle Charging Station: Economic and Environmental Aspects
2024
J. Techo, S. Techo, A. Palamanit, E. Saniso, A. A. Chand and P. Prasannaa
In recent years, Electric Vehicles (EVs) are contributing a major share in Thailand and benefit the environment. Most of the EV charging stations are sourced from solar energy as it becomes a carbon-free source of energy production. Secondly, Thailand is rich in solar irradiance, and higher irradiance leads to higher power production. On the other hand, in tropical conditions, solar Photovoltaic (PV) module temperature increases following the solar irradiance due to high ambient temperature, resulting negative impact on the efficiency and lifespan of photovoltaic (PV) modules. Further, to increase PV power production, in this study, different rates of cooling strategies are proposed. The study found that reducing the temperature by 5% to 25% resulted in increased average power outputs of 5947.94W, 6021.43W, 6094.92W, 6168.41W, and 6241W, respectively. Notably, 25% of the cooling rate achieved higher production. However, it is lower than the nominal power production. Following that, economic analysis and environmental impacts are analyzed for Thailand’s EV charging station using a different cooling rate of PV module. Overall, it is concluded that, depending on the economic viability of the EV charging station, cooling technology can be applied, and it will benefit the EV charging station both economically and environmentally. To further enhance the solar PV power production approach for EV charging stations in Thailand, it is imperative to prioritize future endeavors towards optimizing cooling technology, integrating energy storage, and implementing supportive policies.
Показать больше [+] Меньше [-]Sustainability Analysis of Landfill Cover System Constructed Using Recycled Waste Materials by Life Cycle Assessment
2024
G. Sanoop, Sobha Cyrus and G. Madhu
The sustainability of using industrial by-products for the construction of landfill cover was determined using Life Cycle Assessment (LCA). LCA was carried out on four materials: sand- bentonite mix, red earth- bentonite mix (amended soil), Waste Foundry Sand (WFS)- Bentonite mix, and WFS- marine clay mix. The former two are commonly used cover soils and the latter two are alternative materials proposed. Environmental impacts based on the extraction of resources, processing, transportation to the site, and site preparation were considered using the ‘cradle to site’ approach. Analysis was carried out in OpenLCA software using the ReCiPe (H) Midpoint method of impact assessment. Required data for analysis was taken from the Ecoinvent database supplemented with inputs from a field survey. The use of WFS in landfill cover systems was found to be sustainable using LCA studies when compared to conventional materials.
Показать больше [+] Меньше [-]