Уточнить поиск
Результаты 321-330 из 8,088
Homogenization of diatom assemblages is driven by eutrophication in tropical reservoirs Полный текст
2021
Zorzal-Almeida, Stéfano | Bartozek, Elaine C Rodrigues | Bicudo, Denise C.
Eutrophication is one of the most widespread causes of biotic homogenization in freshwater ecosystems. Biotic homogenization can be characterized as reductions in local diversity (alpha) and occupation of available niches by more generalist species. Beta diversity is expected to decrease in more homogeneous communities, however, there is no consensus on how it responds to eutrophication. We used a space-for-time approach to analyze the process of biotic homogenization on diatom assemblages in response to eutrophication in tropical reservoirs ranging from oligotrophic to hypereutrophic conditions. Diatom assemblages were analyzed in phytoplankton and surface sediment from 12 reservoirs with different trophic levels. We calculated total beta diversity and turnover and nestedness components and used regressions to analyze their relationships with productivity differences (without distance effects). Total beta diversity had a positive influence of the trophic gradient, whereas turnover was not related to eutrophication. However, we found that eutrophication and lower species richness (alpha diversity) led to increasing rates of the nestedness component. We also observed that the homogenization process was not characterized by invasion of new species, but, on the contrary, by filtering nutrient-rich tolerant species also present in oligo-mesotrophic reservoirs and able to occupy available niches in the eutrophic reservoirs. These findings (increase in nestedness, decrease in alpha diversity, and development of tolerant species) suggest that biotic homogenization is leading to a simplification of diatom assemblages in tropical reservoirs, making assemblages from eutrophic and hypereutrophic reservoirs a subset of assemblages from oligotrophic and mesotrophic ones.
Показать больше [+] Меньше [-]Green magnesium oxide nanoparticles-based modulation of cellular oxidative repair mechanisms to reduce arsenic uptake and translocation in rice (Oryza sativa L.) plants Полный текст
2021
Ahmed, Temoor | Noman, Muhammad | Manzoor, Natasha | Shāhid, Muḥammad | Hussaini, Khalid Mahmud | Rizwan, Muhammad | Ali, Shafaqat | Maqsood, Awais | Li, Bin
Arsenic (As) accumulation catastrophically disturbs the stability of agricultural systems and human health. Rice easily accumulates a high amount of As from agriculture fields as compare with other cereal crops. Hence, innovative soil remediation methods are needed to deal with the detrimental effects of As on human health causing food security challenges. Here, we report the green synthesis and characterization of magnesium oxide nanoparticles (MgO-NPs) from a native Enterobacter sp. strain RTN2, which was genetically identified through 16S rRNA gene sequence analysis. The biosynthesis of MgO-NPs in reaction mixture was confirmed by UV–vis spectral analysis. X-ray diffraction (XRD) and fourier transform-infrared spectroscopy (FTIR) analysis showed the crystalline nature and surface properties of MgO-NPs, respectively. Moreover, electron microscopy (SEM-EDS, and TEM) imaging confirmed the synthesis of spherical shape of MgO-NPs with variable NPs sizes ranging from 38 to 57 nm. The results revealed that application of MgO-NPs (200 mg kg⁻¹) in As contaminated soil significantly increased the plant biomass, antioxidant enzymatic contents, and decreased reactive oxygen species and acropetal As translocation as compared with control treatment. The study concluded that biogenic MgO-NPs could be used to formulate a potent nanofertilizer for sustainable rice production in metal contaminated soils.
Показать больше [+] Меньше [-]Ecotoxicological assessment of palm oil mill effluent final discharge by zebrafish (Danio rerio) embryonic assay Полный текст
2021
Hashiguchi, Yuya | Zakaria, Mohd Rafein | Toshinari, Maeda | Mohd Yusoff, Mohd Zulkhairi | Shirai, Y. (Yoshihito) | Hassan Mohd. Ali,
Most palm oil mills adopted conventional ponding system, including anaerobic, aerobic, facultative and algae ponds, for the treatment of palm oil mill effluent (POME). Only a few mills installed a bio-polishing plant to treat POME further before its final discharge. The present study aims to determine the quality and toxicity levels of POME final discharge from three different mills by using conventional chemical analyses and fish (Danio rerio) embryo toxicity (FET) test. The effluent derived from mill A which installed with a bio-polishing plant had lower values of BOD, COD and TSS at 45 mg/L, 104 mg/L, and 27 mg/L, respectively. Only mill A nearly met the industrial effluent discharge standard for BOD. In FET test, effluent from mill A recorded low lethality and most of the embryos were malformed after hatching (half-maximal effective concentration (EC50) = 20%). The highest toxicity was observed from the effluent of mill B and all embryos were coagulated after 24 h in samples greater than 75% of effluent (38% of half-maximal lethal concentration (LC50) at 96 h). The embryos in the effluent from mill C recorded high mortality after hatching, and the survivors were malformed after 96 h exposure (LC50 = 26%). Elemental analysis of POME final discharge samples showed Cu, Zn, and Fe concentrations were in the range of 0.10–0.32 mg/L, 0.01–0.99 mg/L, and 0.94–4.54 mg/L, respectively and all values were below the effluent permissible discharge limits. However, the present study found these metals inhibited D. rerio embryonic development at 0.12 mg/L of Cu, and 4.9 mg/L of Fe for 96 h-EC50. The present study found that bio-polishing plant installed in mill A effectively removing pollutants especially BOD and the FET test was a useful method to monitor quality and toxicity of the POME final discharge samples.
Показать больше [+] Меньше [-]Influence of activated biochar pellet fertilizer application on greenhouse gas emissions and carbon sequestration in rice (Oryza sativa L.) production Полный текст
2021
Shin, JoungDu | Park, DoGyun | Hong, SeungGil | Jeong, Changyoon | Kim, Hyunook | Chung, W. (Woojin)
Supplemental activated biochar pellet fertilizers (ABPFs) were evaluated as a method to sequester carbon and reduce greenhouse gas (GHG) emissions, and improve rice production. The evaluated treatments were a control (standard cultivation method, no additives applied), activated rice hull biochar pellets with 40% of N (ARHBP-40%), and activated palm biochar pellets with 40% of N (APBP-40%). The N supplied by the ARHBP-40% and APBP-40% treatments reduced the need for supplemental inorganic nitrogen (N) fertilizer by 60 percent. The ARHBP-40% treatment sequestered as much as 1.23 tonne ha⁻¹ compared to 0.89 tonne ha⁻¹ in the control during the rice-growing season. In terms of greenhouse gas (GHG) emissions, CH₄ emissions were not significantly different (p > 0.05) between the control and the ARHBP-40%, while the lowest N₂O emissions (0.002 kg ha⁻¹) were observed in the ARHBP-40% during the crop season. Additionally, GHG (CO₂-equiv.) emissions from the ARHBP-40% application were reduced by 10 kg ha⁻¹ compared to the control. Plant height in the control was relatively high compared to others, but grain yield was not significantly different among the treatments. The application of the ARHBP-40% can mitigate greenhouse gas emissions and enhance carbon sequestration in crop fields, and ABPFs can increase N use efficiency and contribute to sustainable agriculture.
Показать больше [+] Меньше [-]Low microplastic abundance in Siganus spp. from the Tañon Strait, Central Philippines Полный текст
2021
Paler, Maria Kristina O. | Leistenschneider, Clara | Migo, Veronica | Burkhardt-Holm, Patricia
Microplastic (MP) occurrence is a major global issue, though data on MP occurrence in the Philippines is limited and the potential effects of MPs on biota are still poorly studied. MP occurrence in fishes remains a concern, especially in economically and ecologically important species such as Siganus spp. This study determined MP occurrence in the gastrointestinal tract of wild rabbit fishes from Tañon Strait, the largest marine protected area in the Philippines. Siganus canaliculatus (n = 65), S. spinus (n = 17), S. guttatus (n = 5), S. virgatus (n = 8) and S. punctatus (n = 1) were sampled from the north and south of the strait. All MPs isolated from the gut of the rabbit fishes except for fibers were chemically analyzed by ATR-FTIR spectroscopy; an established library was used to determine the polymeric identities. Five particles were confirmed as polyester, polyamide, polyethylene or phenoxy resin MPs. The average MP abundance was 0.05 items/individual (S. virgatus > S. guttatus > S. canaliculatus > S. spinus = S. punctatus), which is comparable to studies conducted in other locations using similar methods. Fibers were counted (1556 in total), but not chemically analyzed. The low MP abundance in the samples may be attributed to the capability of rabbit fishes to discriminate food preferences. However, the risks associated with MPs should not be underestimated, especially as all parts of the fishes—including the gut—are utilized as human foods in the Philippines and many other Asian countries.
Показать больше [+] Меньше [-]Estimating air pollutant emissions from crop residue open burning through a calculation of open burning proportion based on satellite-derived fire radiative energy Полный текст
2021
Zhou, Ying | Zhang, Yuying | Zhao, Beibei | Lang, Jianlei | Xia, Xiangchen | Chen, Dongsheng | Cheng, Shuiyuan
Crop residue open burning has substantial negative effects on air quality, human health, and climate change, and accurate and timely estimates of its air pollutant emissions are essential. Open burning proportion (OBP) is the key parameter in estimating the emission from the crop residue open burning by bottom-up method. However, the OBP is mainly obtained by field investigation, which consumes much time, manpower and financial resources, leading to the OBP data deficient seriously. In this study, the significant logarithmic relations were found between OBP and fire radiative energy (FRE), and then the FRE-based OBP estimation models were developed for different regions of China. The comparison between the FRE-based OBP and the field-investigated OBP illustrated the reliability of the developed models (r = 0.71, NMB = −8% and NME = 25%). The OBPs of different municipalities/provinces in mainland China from 2003 to 2018 were further calculated. The results showed that the estimated OBP variation exhibited fluctuating upward trend with annual mean growth rate of 3.7% from 2003 to 2014, while dramatically decreased with annual mean reduction rate of 5.9% from 2014 to 2018. The estimation accuracy of emission from open biomass burning can also be can be significantly improved by basing on the year-specific OBP, compared with the calculation based on fixed OBP. The annual PM₂.₅ emissions would decrease 4.5%–25.9% and increase 6.6%–30.7% in the scenarios of a fixed OBP during 2003–2014 and 2014–2018, respectively. The developed models complemented the severely missing OBP data of mainland China for the first time. By combining the advantages of bottom-up approach and FRE method, the proposed FRE-based models can avoid their disadvantages, and can help to get more accurately and timely emissions from crop residue open burning.
Показать больше [+] Меньше [-]Risk of gastric cancer in the environs of industrial facilities in the MCC-Spain study Полный текст
2021
García-Pérez, Javier | Lope, Virginia | Fernández de Larrea-Baz, Nerea | Molina, Antonio J. | Tardón, Adonina | Alguacil, Juan | Pérez-Gómez, Beatriz | Moreno, Víctor | Guevara, Marcela | Castaño-Vinyals, Gemma | Jiménez-Moleón, José J. | Gómez Acebo, Inés | Molina-Barceló, Ana | Martín Hernández, Vicente | Kogevinas, Manolis | Pollán, Marina | Aragonés, Nuria
Gastric cancer is the fifth most frequent tumor worldwide. In Spain, it presents a large geographic variability in incidence, suggesting a possible role of environmental factors in its etiology. Therefore, epidemiologic research focused on environmental exposures is necessary.To assess the association between risk of gastric cancer (by histological type and tumor site) and residential proximity to industrial installations, according to categories of industrial groups and specific pollutants released, in the context of a population-based multicase-control study of incident cancer conducted in Spain (MCC-Spain).In this study, 2664 controls and 137 gastric cancer cases from 9 provinces, frequency matched by province of residence, age, and sex were included. Distances from the individuals’ residences to the 106 industries located in the study areas were computed. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95%CIs) for categories of distance (from 1 km to 3 km) to industries, adjusting for matching variables and potential confounders.Overall, no excess risk of gastric cancer was observed in people living close to the industrial installations, with ORs ranging from 0.73 (at ≤2.5 km) to 0.93 (at ≤1.5 km). However, by industrial sector, excess risks (OR; 95%CI) were found near organic chemical industry (3.51; 1.42–8.69 at ≤2 km), inorganic chemical industry (3.33; 1.12–9.85 at ≤2 km), food/beverage sector (2.48; 1.12–5.50 at ≤2 km), and surface treatment using organic solvents (3.59; 1.40–9.22 at ≤3 km). By specific pollutant, a statistically significant excess risk (OR; 95%CI) was found near (≤3 km) industries releasing nonylphenol (6.43; 2.30–17.97) and antimony (4.82; 1.94–12.01).The results suggest no association between risk of gastric cancer and living in the proximity to the industrial facilities as a whole. However, a few associations were detected near some industrial sectors and installations releasing specific pollutants.
Показать больше [+] Меньше [-]Application of surface complexation modeling on adsorption of uranium at water-solid interface: A review Полный текст
2021
Sun, Yubing | Li, Ying
Precise prediction of uranium adsorption at water-mineral interface is of great significance for the safe disposal of radionuclides in geologic environments. Surface complexation modeling (SCM) as a very useful tool has been extensively investigated for simulating adsorption behavior of metals/metalloids at water-mineral interface. Numerous studies concerning the fitting of uranium adsorption on various adsorbents using SCM are well documented, but the systematic and comprehensive review of uranium adsorption using various SCM is not available. In this review, we briefly summarized the rationale of SCM, including constant-capacitance-model (CCM), diffuse-layer-model (DLM), triple-layer-model (TLM); The recent progress in the application of SCM on the fitting of uranium adsorption towards metal (hydr)oxides, clay minerals and soil/sediments was reviewed in details. This review hopefully provides the beneficial guidelines for predicting the transport and fate of uranium in geologic environments beyond laboratory timescales.
Показать больше [+] Меньше [-]MAPK/iNOS pathway is involved in swine kidney necrosis caused by cadmium exposure Полный текст
2021
Yang, Zijiang | Wang, Shengchen | Liu, Honggui | Xu, Shiwen
Cadmium (Cd) pollution in the environment could cause toxic damage to animals and humans. MAPK pathways could regulate their downstream inflammatory factors, and plays a crucial role in necrosis. Since the swine kidney tissue is an important accumulation site of Cd and target organ of its toxic damage, but the damage form of Cd to swine kidney and the role of MAPK pathways in it are still not clear, we selected six week old weaned piglets as the research object, and fed a diet supplemented CdCl₂ (20 mg/kg) to establish the model of liver injury induced by Cd. The expressions and phosphorylation of MAPK pathways (ERK, JNK, p38), expression levels of inflammatory factors (TNF-α, NF-κB, iNOS, COX-2 and PTGE) and necrosis related genes (MLKL, RIPK1, RIPK3 and FADD) and heat shock proteins (HSPs) were detected by RT-PCR and Western blot. H.E. staining was used to determine the damage of kidney caused by Cd exposure. The results showed that Cd exposure could activate p38 and JNK pathway phosphorylation, rather than ERK 1/2, up regulated the expressions of inflammatory factors, finally induced programmed necrosis (increasing the expressions of MLKL, RIPK1, RIPK3 and FADD) in swine kidney. Our study elucidated the mechanism of Cd-damage to swine kidney and the relationship among MAPK pathways, inflammatory factors and programmed necrosis in swine.
Показать больше [+] Меньше [-]Eco-friendly yield-scaled global warming potential assists to determine the right rate of nitrogen in rice system: A systematic literature review Полный текст
2021
Islam Bhuiyan, Mohammad Saiful | Rahamāna, Ājijura | Kim, Gil Won | Das, Suvendu | Kim, Pil Joo
Rice paddies are one of the largest greenhouse gases (GHGs) facilitators that are predominantly regulated by nitrogen (N) fertilization. Optimization of N uses based on the yield has been tried a long since, however, the improvement of the state-of-the-art technologies and the stiffness of global warming need to readjust N rate. Albeit, few individual studies started to, herein attempted as a systematic review to generalize the optimal N rate that minimizes global warming potential (GWP) concurrently provides sufficient yield in the rice system. To satisfy mounted food demand with inadequate land & less environmental impact, GHGs emissions are increasingly evaluated as yield-scaled basis. This systematic review (20 published studies consisting of 21 study sites and 190 observations) aimed to test the hypothesis that the lowest yield-scaled GWP would provide the minimum GWP of CH₄ and N₂O emissions from rice system at near optimal yields. Results revealed that there was a strong polynomial quadratic relationship between CH₄ emissions and N rate and strong positive correlation between N₂O emissions and N rate. Compared to control the low N dose emitted less (23%) CH₄ whereas high N dose emitted higher (63%) CH₄ emission. The highest N₂O emission observed at moderated N level. In total GWP, about 96% and 4%, GHG was emitted as CH₄ and N₂O, respectively. The mean GWP of CH₄ and N₂O emissions from rice was 5758 kg CO₂ eq ha⁻¹. The least yield-scaled GWP (0.7565 (kg CO₂ eq. ha⁻¹)) was recorded at 190 kg N ha⁻¹ that provided the near utmost yield. This dose could be a suitable dose in midseason drainage managed rice systems especially in tropical and subtropical climatic conditions. This yield-scaled GWP supports the concept of win–win for food security and environmental aspects through balancing between viable rice productivity and maintaining convincing greenhouse gases.
Показать больше [+] Меньше [-]