Уточнить поиск
Результаты 321-330 из 734
Odor Emissions from Municipal Solid Waste Open Dumps Constituting Health Problems Due to their Composition, Ecological Impacts and Potential Health Risks Полный текст
2024
S. Srinivasan and R. Divahar
The presence of Hydrogen sulfide, Methane, Volatile Organic Compounds (VOCs), and other odorous compounds in the ambient air is the root cause of the offensive odor emitting from the MSW dumping yard. Composition features and health risks associated with odor emissions concentrations in MSW dumping yards. This paper aims to provide an overview of research on health problems due to their composition, ecological impacts, and potential health risks of volatile organic compounds (VOCs) and to examine the relationship between VOC exposure and chronic illnesses in humans and the environment. In this study, a comprehensive investigation of VOC odor emission from an urban MSW dumping site has been performed. The VOC odor sample was analyzed using the GC-MS technique. The maximum VOCs concentration reported is due to tert - butylbenzene at 1.41μg.m-3 and the minimum is due to Sec-butylbenzene at 0.07 μg.m-3. Scientific databases, including Google Scholar, California Office of Environmental Health Hazard Assessment (OEHHA), and US EPA (Integrated Risk Information System (IRIS), were searched extensively using a bibliographic technique, in addition to a case study on MSW dumping yard workers. The findings of epidemiologic and experimental research, the emission of odors as a result of volatile organic compounds (VOCs) can cause a variety of non-cancerous health effects that are linked to abnormal functioning of the body’s vital organs, including the nervous and coronary, and pulmonary systems. It can also have minimal impact on the environment by causing global warming and ozone layer depletion. The odor emissions from the dumpsite pose both carcinogenic and noncarcinogenic risks to the health of the individuals participating in the dumping yard. As a result of these results, it is important to manage odor emissions (VOCs) during composting and take steps to reduce their negative effects on the environment and public health.
Показать больше [+] Меньше [-]Isolation, Identification, and Characterization of Putative Dye-Degrading Bacteria from Polluted Soil: Bioremediation Investigations Полный текст
2024
M. M. Sahila, M. Shonima Govindan, N. K. Shainy, P. Nubla and M. Kulandhaivel
The residual dye within the soil from the synthetic dye manufacturing and fabric industries is a global state of affairs. The discharge consists of an excessive content of pigments and other components, creating complicated structures. It leads to damage to the soil structure and its fertility. Amid existing amputation methods, microbial remediation takes significant consideration owing to its subordinate charge, sophisticated proficiency, and fewer influences on the milieu. The current study was premeditated for the seclusion and portrayal of azo dye- dye-decolorizing bacteria, which is a criterion for emerging a microorganism-facilitated treatment of adulterating dyes. In this present investigation, twenty sorts of bacteria that were talented to decolorize seven kinds of azo dyes (Crystal Violet, Methylene Blue, Safranine, Congo Red, Methyl Orange, Malachite Green, and Carbol Fuchsin) were isolated from dye-polluted soil from the dying industry near the railway station; in Calicut. Based on 16S rDNA scrutiny, the most resourceful decolourizing bacteria for these azo dyes was identified as Priestia megaterium strain NRBC 15308. After characterization, Priestia megaterium was found to be optimally nurtured at 35°C, on a pH of 7, with a 1.5% glucose concentration in a minimal salt medium. 100% decolorization of a 6% dye solution was found at optimal conditions by Priestia megaterium. Priestia megaterium can decolorize cotton and gauze suspended in the dye solution in 24 hours. Bioremediation studies with the isolate proved that the inhibition effect of the dye solution on seed germination could be removed by the application of Prestia megaterium. The isolation of Priestia megaterium strain NRBC 15308 as a dye-degrading bacterium holds immense promise for remediating dye-contaminated soil.
Показать больше [+] Меньше [-]Adoption Intention of Technology-Based Water Generation and Management Through W-TAM Полный текст
2024
Rajashree Jain, Sarika Sharma, Deepthi Setlur, Aditya Bajaj and Dhwani Parekh
Increasing concerns related to climate change and extensive use of water resources have depleted the available water for use. For water as an essential requirement for humans to carry onto their day-to-day chores, access and availability of water becomes the highest priority. Technology-based solutions support water generation, filtration, quality testing, water distribution, and many other areas. The present paper dwells on the user acceptance of these technologies. A conceptual model was developed through a literature review and named as Water-Technology Acceptance Model (W-TAM). The data was collected through a self-designed survey instrument to empirically test the proposed model. Analysis of this data was done with confirmatory factor analysis and structural equation modeling. It was observed that the actual use of these technologies depends on the ease of use and usefulness. Attitude to use them also matters. Although perceived risks and affordability did affect the use of W-TAM, trust, and regulatory aspects did not confirm their role in the adaptation of W-TAM. These findings will provide meaningful insights to the stakeholders and will help them in the practical implementation of these water-based technologies. This may also help service providers in the formulation of policies for technology-based water generation.
Показать больше [+] Меньше [-]Adsorptive Remediation of Dyes Through A Novel Approach from Nanotechnology: A Comprehensive Review Полный текст
2024
Sadia Shakoor, M. Shahnawaz Khan and M. Ehtisham Khan
Due to rapid industrial growth and the increased economic status of people, water sources across the globe are being significantly polluted with a wide array of effluents. Industrial, agronomic, and customary activities have led to the repeated infestation of water by discarded materials. Consequently, there is an urgent need for advanced technologies to effectively eradicate these impurities from wastewater. Among the various methods established for wastewater remediation, the adsorption process has gained remarkable significance due to its efficiency and effectiveness. The use of nano adsorbents (NADs) represents an emerging solution to these environmental issues. NADs possess exceptional physical and chemical characteristics, which enhance their applicability compared to traditional adsorbents. Their advanced grade, prominence, and excellence in various arenas make them a superior choice for wastewater treatment. Recent explorations have shown that NADs, such as carbon nanotubes, graphene, and metal and metal oxide nano adsorbents, have a pronounced and favorable impact on wastewater treatment. The focus of this review article is to provide current data and insights into the use of NADs for wastewater remediation. It aims to highlight the benefits of these novel materials and to discuss the potential areas for further improvement in this field. By exploring the latest advancements and applications of NADs, this review seeks to contribute to the ongoing efforts to address the critical issue of water pollution and to promote sustainable water management practices.
Показать больше [+] Меньше [-]Modeling Landslide Hazard in the Eastern Himalayan Mountain Region of the Papumpare District of Arunachal Pradesh, India Using Multicriteria Decision-Making (MCDM) and Geospatial Techniques Полный текст
2024
Tilling Riming, Praduyt Dey, Santanu Kumar Patnaik and Manju Narzary
Landslides are significant natural hazards that cause damage to the environment, life, and properties, mainly in hilly terrain. This research was mostly focused on generating a landslide susceptibility zone map of Papumpare District, Arunachal Pradesh, and classifying the region from high susceptibility to least susceptibility using AHP modeling techniques considering the landslide causative factors. The Analytical Hierarchy Process (AHP) is a multicriteria decision-making model (MCDM) in which each parameter is compared based on its role in triggering a landslide. A total of eight parameters were selected based on the factors that could affect the most, like Slope, Rainfall, Drainage Density, Lineament Density, Geomorphology, Soil, Geology, and Land use/Land cover. These layers were prepared using ArcGIS 10.8 software and ERDAS IMAGINE 2014. Based on the output, the region was classified into five zones of landslide susceptibility classes. Of these, the high-very-high landslides are mostly amassed near the steep and disturbed slopes due to earth-cutting, especially for building or construction of roads. Validation was done using the ROC curve (73.2%) suggesting good performance of the model. The outcome of this work will provide information for proper landslide hazard management and will help in formulating suitable mitigation strategies in the future.
Показать больше [+] Меньше [-]Study of Biological Treatment of Rice Mill Wastewater Using Anaerobic Semicontinuous Reactors (ASCR) Полный текст
2024
R. K. Singh and S. Bajpai
Anaerobic digestion (AD) of industrial wastewater has drawn researchers’ attention due to biofuel’s recovery in the form of biomethane. This study introduced two anaerobic semi-continuous reactors (ASCR)- R1 and R2 for bioremediation of the rice mill wastewater (RMWW). The alkali treatment of the substrate in reactors R1 and R2 was done by dry NaOH and Ca(OH)2, respectively. Both reactors were loaded with 80% of the RMWW and 20% of the cow-dung-fed biogas plant sludge (BGPS) for 16 days of stabilization at mesophilic temperatures (18℃ to 42℃). A small amount of jaggery and white rot fungi (Phanerochaete chrysosporium) were also added into both reactors for the bacterial growth and removal of the biorefractory organics (lignin and phenol) present in RMWW, respectively. The impact of variations in the hydraulic retention time (HRT) and organic loading rate (OLR) upon the anaerobic biodegradation of RMWW was studied in three operating phases (OP) I, II, and III. The highest BOD, COD, lignin, and phenol removal achieved in reactors R1 and R2 were 94%, 92%, 84%, and 82%, as well as 93%, 91%, 82%, and 80%, respectively, in OP I. The highest biomethane yield in both reactors was 0.005 L.g-1 COD in OP II. The results of the three operating phases reveal that a high HRT and low OLR give the maximum pollutant removal efficiency and the highest biomethane yield. The novelty of this research paper is the significant removal of the biorefractory organics lignin and phenol from the RMWW with the help of white rot fungi and specific bacterial strains Bacillus sp., Pseudomonas sp., Enterobacter sp., Actinomycetes sp. and Streptomycetes sp. present in the inoculum. The digestates from reactors were rich in macro and micronutrients viz., N, P, K, Cu, Zn, Fe, etc., essential for plant growth.
Показать больше [+] Меньше [-]A Review on Biosurfactants with their Broad Spectrum Applications in Various Fields Полный текст
2024
Nazim Uddin, Jyoti Sarwan, Sunny Dhiman, Kshitij, Komal Mittal, Vijaya Sood, Md. Abu Bakar Siddique and Jagadeesh Chandra Bose K.
Because of the superior qualities of biosurfactants over their equivalents derived from fossil fuels, they have recently attracted more attention. Although production costs are still a major barrier to biosurfactants’ superiority over synthetic surfactants, biosurfactants are expected to grow in market share over the next several decades. Glycolipids, a class of low-molecular-weight biosurfactants, are particularly sought-after for a variety of surfactant-related applications due to their effective reduction of surface and interfacial tension. Rhamnolipids, trehalose lipids, sophorolipids, and mannosyl erythritol lipids are the primary types of glycolipids. Glycolipids are made of hydrophilic carbohydrate moieties joined to hydrophobic fatty acid chains by ester bonds. This review addresses the unique glycolipid production and the wide range of goods available in the global market, as well as the present state of the glycolipid industry. Applications include food processing, petroleum refining, biomedical usage, bioremediation, and boosting agricultural productivity. With biosurfactants, their beneficial Ness in releasing oil encased in rock, a need for enhanced oil recovery (EOR). Another crucial biotechnological component in anti-corrosion procedures is biosurfactants, which stop Crude oil transportation in pipelines and are made easier by incrustations and the growth of biofilms on metallic surfaces. They are also employed in the production of emulsifiers and demulsifies and have other cutting-edge uses in the oil sector. Natural surfactants can be used to lessen pollution produced by chemical solvents or synthetic detergents without compromising the oil industry’s financial gains. Consequently, it is imperative to invest in biotechnological processes. It is anticipated that natural surfactants will take over the global market in the not-too-distant future and prove to be economically feasible. It is likely possible to substitute synthetic surfactants used in agricultural product composition with biosurfactants. Because biosurfactants can benefit crops without harming the environment, they hold great potential as a useful tool in the fight against pesticide use. Furthermore, by making hazardous and leftover pesticides more soluble and thus accessible for biodegradation by other microbes, their potential as bioremediation agents can help to improve the health of soil systems. This article is based on the explanation of various applications of Biosurfactants.
Показать больше [+] Меньше [-]Penta Helix Collaboration Model Involving Reserve Component Personnel in Disaster Resilience in Malang Regency Полный текст
2024
D. Muktiyanto, S. Widagdo, M. Istiqomah and R. Parmawati
This study aims to analyze the Penta helix collaboration model for involving reserve component personnel in disaster resilience in Malang Regency. A qualitative approach was used with an in-depth interview method involving nine informants from various Penta helix actors, namely academia, business, the community, government, and the Media. The main findings indicate that the Penta helix collaboration model has the potential to enhance disaster resilience in Malang Regency. Its strengths lie in inclusive participation, transparency, clear leadership, and the commitment of stakeholders. However, there are still weaknesses, such as a lack of coordination, limited resources, and suboptimal role understanding that hinder the involvement of reserve component personnel. Each actor makes significant contributions: academics provide knowledge, businesses aid in logistics, communities engage in mitigation and emergency response, the government formulates policies, and the media disseminates information. Major challenges include a lack of coordination, limited resources, miscoordination, bureaucracy, insufficient training, and unclear legal frameworks. Improvement efforts include strengthening coordination, increasing resource capacity, clarifying roles, developing guidelines, and enhancing training. In conclusion, the Penta helix collaboration model in Malang Regency has great potential but requires improvements to enhance its effectiveness, providing insights for stakeholders to strengthen disaster resilience in the region.
Показать больше [+] Меньше [-]Evaluation of Toxicity of Few Novel Insecticides Against Different Aphid Species (Rhopalosiphum maidis, Myzus persicae, Liphaphis erysimi) Полный текст
2024
Ajinkya Markad, Pritha Ghosh and Matangi Mishra
Aphids are important insect pests and are considered a major threat to various crops. In the laboratory experiment, our objective is to assess the toxicity level of some newer synthetic insecticides, viz. Imidacloprid, Flonicamid, and Spirotetramat against different species of aphids viz. maize leaf aphids (Rhopalosiphum maidis), green peach aphids (Myzus persicae), and mustard aphids (Liphaphis erysimi). The leaf dip bioassay was conducted to evaluate the LC50 and LT50 values. Among these novel molecules, Spirotetramat was the most toxic insecticide against R. maidis and M. persicae, with median lethal concentrations (LC50) of 0.68 and 3.99 ppm, and Flonicamid was the most toxic against L. erysimi with an LC50 value of 5.79 ppm. The median lethal concentrations for the Imidacloprid, Flonicamid, and Spirotetramat are different for each species of aphids. The LT50 values of the given insecticides revealed that the Imidacloprid has the potential for giving effective control of R. maidis, M. persicae, and L. erysimi species, as evidenced by the shorter time required for 50% mortality with LT50 values of 44.53, 49.19 and 44.90 hrs respectively with median lethal concentrations of 4.20, 5.14 and 10.86 ppm. The results indicated variations in toxicity among these different chemicals against different insect species.
Показать больше [+] Меньше [-]Optimizing Community Health Center Effluent Treatment with Moving Bed Biofilm Reactor Technology Combined with Activated Carbon and Chlorine Полный текст
2024
Budirman, Muhammad Farid Samawi, Fahruddin, Paulina Taba, Mahatma Lanuru and Agus Bintara Birawida
Community Health Centers are small-scale hospitals that serve community medicine in Indonesia. These activities generate wastewater containing various contaminants, such as pathogens, chemicals, and nutrients, which can pollute the environment and endanger human health. So, efforts are needed to reduce their impact through wastewater treatment. This research applies an anaerobic-aerobic biofilter system with Moving Bed Biofilm Reactor (MBBR) technology combined with activated carbon and chlorine in treating wastewater. The treatments in the study were different service capacities and wastewater treatment, with three replicates in each treatment. The residence time of wastewater in the system is 4 h. The results showed that combining MBBR technology, activated carbon, and chlorine could reduce temperature, TSS, pH, BOD5, COD, NH3, and Coliform values in wastewater in three Community Health Center services. Thus, it can be concluded that the different services and wastewater treatment efforts, combined with MBBR, activated charcoal, and chlorine, have been proven to affect and improve the quality of wastewater from the Community Health Center to meet the effluent quality standards.
Показать больше [+] Меньше [-]