Уточнить поиск
Результаты 361-370 из 6,560
Plutonium in Southern Yellow Sea sediments and its implications for the quantification of oceanic-derived mercury and zinc Полный текст
2020
Wang, Jinlong | Du, Jinzhou | Zheng, Jian | Bi, Qianqian | Ke, Yu | Qu, Jianguo
The spatial distributions of mercury (Hg) and zinc (Zn) concentration and the isotopic composition of plutonium (Pu) were investigated in surface sediments and sediment cores collected from the Southern Yellow Sea (SYS) during May 2014. The variation of the ²⁴⁰Pu/²³⁹Pu atom ratio (0.18–0.31) in the surface sediments of the SYS clearly indicated a signal of close-in fallout input from the Pacific Proving Ground (PPG). The buried ²³⁹⁺²⁴⁰Pu in the sediment of the SYS was estimated to be (4.7 ± 0.5) × 10¹⁰ Bq y⁻¹ during the period from 2011 to 2014, of which ∼33% (1.5 × 10¹⁰ Bq y⁻¹) was derived from the PPG by long-range transport via ocean currents (e.g., the North Equatorial Current and Kuroshio Current). The concentrations of Hg and Zn varied from 0.003 to 0.067 mg kg⁻¹ and from 43.9 to 137 mg kg⁻¹, respectively, and exhibited positive correlations with the ²³⁹⁺²⁴⁰Pu activity both in the surface sediments (0–1 cm) and upper layers (7 cm) of the sediment cores. Therefore, by using Pu as a tracer, we estimated that the oceanic input contributed 2.0 tons y⁻¹ of Hg and 1.0 × 10³ tons y⁻¹ of Zn to the SYS sediments between 2011 and 2014, which accounted for 33% and 3% of total buried Hg and Zn, respectively. These findings indicate that environmental pollution control should also consider the oceanic contribution of some pollutants. The results of the present work help to elucidate the biogeochemical cycling of trace metals in marginal seas, and are helpful for managing environmental pollution in marine environments.
Показать больше [+] Меньше [-]Ecological and human health risk assessment of metals leached from end-of-life solar photovoltaics Полный текст
2020
Nain, Preeti | Kumar, Arun
Photovoltaic industry has shown tremendous growth among renewable energy sector. Though, this high installation rate will eventually result in generation of large volume of end-of-life photovoltaic waste with hazardous metals. In present study, reported leached metal contents from different photovoltaics in previous investigations were utilized for (i) potential fate and transport analysis to soil and groundwater and, (ii) estimating ecological and human health risks via dermal and ingestion pathways for child and adult sub-populations. The results indicate that the children are at highest risk, mainly due to lead (hazard quotient from 1.2 to 2.6). Metals, such as cadmium, lead, indium, molybdenum and tellurium pose maximum risks for child and adult sub-populations via soil-dermal pathway followed by soil-ingestion pathway. This is further proved by calculated high values of contamination factor and geo-accumulation index for cadmium (102.4), indium (238.9) and molybdenum (16.12). The estimated soil contamination is significant with respect to aluminium, silver, cadmium, iron, lead, however, groundwater contamination was insignificant. Exposure to polluted soils yields an aggregate hazard index (for non-cancer effects) > 1 for all four pathways, with soil dermal pathway as the major contributor. Lead poses significant cancer risk for all scenarios (average risk: 0.0098 to 0.047 (soil) and 2.1 × 10⁻⁵ to 3.5 × 10⁻⁵ (groundwater)), whereas acceptable non-cancer risk was observed for other metals from groundwater exposure. Further, variance contribution and spearman correlation coefficient analysis show that metal concentration, exposure frequency and ingestion rate are the main contributors towards overall uncertainty in risk estimates. More detailed assessment for environmentally-sensitive metals should be carried out by considering other field breakage scenarios also, although the assessment suggests low risk for majority of metals examined.
Показать больше [+] Меньше [-]High-content screening in zebrafish identifies perfluorooctanesulfonamide as a potent developmental toxicant Полный текст
2020
Dasgupta, Subham | Reddam, Aalekhya | Liu, Zekun | Liu, Jinyong | Volz, David C.
Per- and polyfluoroalkyl substances (PFASs) have been used for decades within industrial processes and consumer products, resulting in frequent detection within the environment. Using zebrafish embryos, we screened 38 PFASs for developmental toxicity and revealed that perfluorooctanesulfonamide (PFOSA) was the most potent developmental toxicant, resulting in elevated mortality and developmental abnormalities following exposure from 6 to 24 h post fertilization (hpf) and 6 to 72 hpf. PFOSA resulted in a concentration-dependent increase in mortality and abnormalities, with surviving embryos exhibiting a >12-h delay in development at 24 hpf. Exposures initiated at 0.75 hpf also resulted in a concentration-dependent delay in epiboly, although these effects were not driven by a specific sensitive window of development. We relied on mRNA-sequencing to identify the potential association of PFOSA-induced developmental delays with impacts on the embryonic transcriptome. Relative to stage-matched vehicle controls, these data revealed that pathways related to hepatotoxicity and lipid transport were disrupted in embryos exposed to PFOSA from 0.75 to 14 hpf and 0.75 to 24 hpf. Therefore, we measured liver area as well as neutral lipids in 128-hpf embryos exposed to vehicle (0.1% DMSO) or PFOSA from 0.75 to 24 hpf and clean water from 24 to 128 hpf, and showed that PFOSA exposure from 0.75 to 24 hpf resulted in a decrease in liver area and increase in yolk sac neutral lipids at 128 hpf. Overall, our findings show that early exposure to PFOSA adversely impacts embryogenesis, an effect that may lead to altered lipid transport and liver development.
Показать больше [+] Меньше [-]Hydrocarbonoclastic bacterial species growing on hexadecane: Implications for bioaugmentation in marine ecosystems Полный текст
2020
Rodrigues, Edmo Montes | Cesar, Dionéia Evangelista | Santos de Oliveira, Renatta | de Paula Siqueira, Tatiane | Tótola, Marcos Rogério
of bioaugmentation strategies are an obstacle for damage mitigation caused by oil spills in marine environments. Cells added to the contaminated sites are quickly lost by low adherence to the contaminants, rendering ineffective. This study used two hydrocarbonoclastic species - Rhodococcus rhodochrous TRN7 and Nocardia farcinica TRH1 cells - growing in mineral medium containing hexadecane to evaluate cell distribution in a crude-oil contaminated marine water. Cell affinity to hydrophobic compounds was quantified using Microbial Adhesion to Hydrocarbons test and analysis of fatty acids profile was performed using the Microbial Identification System. Bioremediation simulations were set up and cell populations of both strains were quantified by Fluorescent in situ Hybridization. R. rhodochrous and N. farcinica reached up to 97% and 60% of adhesion to hexadecane, respectively. The carbon source had more influence on the fatty acid profiles of both strains than the microbial species. The presence of 45.24% of 13:0 anteiso on total fatty acids in R. rhodochrous and 12.35% of saturated fatty acids with less than 13 carbons atoms in N. farcinica, as well as the occurrence of fatty alcohols only in presence of hexadecane in both species, are indicators that fatty acid changes are involved in the adaptation of the cells to remain at the water/oil interface. Cell quantification after bioremediation simulations revealed an increase in the density of both species, suggesting that the bioremediation strategies resulted on the increase of hydrocarbonoclastic species and up to 27.9% of all prokaryotic microbial populations in the microcosms were composed of R. rhodochrous or N. farcinica. These findings show the potential of application of these two bacterial strains in bioaugmentation of hydrocarbon-contaminated marine ecosystems.R. rhodochrous TRN7 and N. farcinica TRH1 hydrocarbonoclastic strains modify the fatty acid profile and increases density, optimizing hydrocarbons biodegradation.
Показать больше [+] Меньше [-]Regulation of lipid droplets via the PLCβ2-PKCα-ADRP pathway in granulosa cells exposed to cadmium Полный текст
2020
In steroidogenic cells, steroids are synthesized de novo from cholesterol stored in lipid droplets (LDs). The size of LDs regulated by adipose differentiation-related protein (ADRP) is closely related to cholesterol ester hydrolysis. Many studies reported that cadmium (Cd) had dual effects on steroidogenesis in granulosa cells (GCs). However, the role of LD and its regulation in abnormal steroidogenesis caused by Cd exposure remain unknown. In current study, female rats were exposed to CdCl₂ during gestation and lactation, and influence of such exposure was investigated in ovarian GCs of female offspring. The size of LDs was found much smaller than normal in GCs; ADRP was down-regulated and hormone-sensitive lipase (HSL) phosphorylation was increased, followed by up-regulation of steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage enzyme (CYP11A1); the expression of 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-2 (PLCβ2) and protein kinase C alpha type (PKCα) were both decreased accompanying the ADRP down-regulation. This series of events resulted in a high level of progesterone in serum. Similar results were demonstrated in GCs treated with 20 μM CdCl₂ for 24 h in vitro. The protein level of ADRP was decreased after gene silencing of PLCβ2/PKCα, and the knockdown of PLCβ2/PKCα/ADRP led to micro-sized LD formation. We found that Cd exposure down-regulated ADRP by inhibiting the PLCβ2-PKCα signaling pathway, reduced the size of LDs, and promoted HSL phosphorylation. StAR and CYP11A1 were both up-regulated following the hydrolysis of cholesterol ester, which led to a high production of progesterone. LD thereby is a target subcellular organelle for Cd to affect steroid hormone synthesis in ovarian GCs. These findings might help to uncover the mechanism of ovarian dysfunction and precocious puberty caused by Cd pollution.
Показать больше [+] Меньше [-]Regulation of insecticide toxicity by kinetin in two paddy field cyanobacteria: Physiological and biochemical assessment Полный текст
2020
Tiwari, Santwana | Prasad, Sheo Mohan
The imprudent agricultural practices are leading to an increasing load of pesticides in agricultural fields. Thus, there is a need to minimize the harmful effect of pesticides by adopting sustainable strategies. In the recent past decade, kinetin, a plant synthetic hormone, has been reported as a pesticide toxicity alleviator in higher plants. But its role in mitigating pesticide toxicity in cyanobacteria is still limited. Thus, in current study an attempt has been made to investigate the potential of kinetin in regulating cypermethrin, an insecticide, induced toxicity in Anabaena PCC 7120 and Nostoc muscorum ATCC 27893. Cypermethrin (Cyp₁; 2 μg ml⁻¹ and Cyp₂; 4 μg ml⁻¹) showed negative impact on growth, photosynthetic pigments, photosynthetic O₂-evolution and primary photochemistry of PS II (Phi_P₀, Psi_₀, Phi_E₀) resulting in decrease in performance index (PIABS). However, under similar conditions, increases in energy flux parameters (ABS/RC, TR₀/RC, ET₀/RC and DI₀/RC) were noticed. Cypermethrin at both the doses enhanced the level of oxidative stress biomarkers (SOR, H₂O₂, and MDA equivalent contents) despite of increased antioxidant enzymatic activity (SOD, POD, CAT and GST).Under similar condition, cypermethrin at tested doses caused substantial decrease in non-enzymatic antioxidant contents (proline, cysteine and NP-SH). Nevertheless, kinetin treatment attenuated cypermethrin induced oxidative stress by further up-regulating the activity of enzymatic antioxidants and by enhancing the contents of non-enzymatic antioxidants. Thus, with the application of kinetin improved photochemistry of PS II and growth yield of both the cyanobacteria were observed even in the presence of cypermethrin. Current results establish that cypermethrin induces toxicity on photosynthesis, photosynthetic pigments and growth, and this effect was more pronounced in Anabaena PCC 7120 than Nostoc muscorum ATCC 27893. Furthermore, the potential role of kinetin in mitigating the toxicity of cypermethrin in both the cyanobacteria provides an insight to be used in paddy fields for sustainable agricultural practices.
Показать больше [+] Меньше [-]Synthesis of nano-magnetic MnFe2O4 to remove Cr(III) and Cr(VI) from aqueous solution: A comprehensive study Полный текст
2020
Eyvazi, Behzad | Jamshidi-Zanjani, Ahmad | Darban, Ahmad Khodadadi
The co-precipitation method was used to synthesize nano-magnetic adsorbent MnFe₂O₄ (nMFO), characterized through XRD, SEM, EDS, and BET techniques. The synthesized nMFO was used for hexavalent and trivalent chromium ions elimination from the aqueous phase. The optimum pH for the adsorption of Cr (VI) and Cr (III) was determined as 2 and 5, respectively. The chromium ions adsorption behavior was well interpreted through the pseudo-second order kinetics model. Furthermore, isotherm studies were conducted, and the obtained results indicated that Langmuir isotherm model could well justify the chromium ions adsorption process. Quick removal (less than 10 min) of both chromium ions and high removal efficiency were occurred using nMFO. The utmost adsorption capacity of trivalent and hexavalent chromium ions were determined as 39.6 and 34.84 mg g⁻¹, respectively. Thermodynamic studies on chromium adsorption revealed positive value for ΔH and negative value for ΔG, representing that chromium ions adsorption was an endothermic and spontaneous process. The multilinearity in the graphs of chromium ions adsorption was observed using intra-particle diffusion model. In this regard, the external mass transfer of chromium ions on synthesized nanoparticles was the important and controlling step in the adsorption process.
Показать больше [+] Меньше [-]High throughput analysis of 21 perfluorinated compounds in drinking water, tap water, river water and plant effluent from southern China by supramolecular solvents-based microextraction coupled with HPLC-Orbitrap HRMS Полный текст
2020
Liang, Ming | Xian, Yanping | Wang, Bin | Hou, Xiangchang | Wang, Li | Guo, Xindong | Wu, Yuluan | Dong, Hao
The present work reported a high-throughput strategy for the analysis of 21 perfluorinated compounds (PFCs) in drinking water, tap water, river water and plant effluent from southern China by supramolecular solvent (SUPARS) vortex-mixed microextraction combined with high performance liquid chromatography-Orbitrap high resolution mass spectrometry (HPLC-Orbitrap HRMS). The SUPRAS without heating assistance is less solvent-consumption, meeting the requirements for green environmental protection and sustainable development. Parameters in the microextraction such as volume of dodecanol and tetrahydrofuran (THF), vortexing extraction and centrifugation time, salt concentration were investigated. The optimal extraction conditions were 250 μL of undecanol, 1.0 mL of THF and 20.0% (w/v, 4 g) NaCl. Under the optimum conditions, method limit of detection and method limit of quantitation in the ranges of 0.01–0.08 μg/L and 0.03–0.25 μg/L, good recoveries (72.5–117.8%) and intra-day precision (1.1–11.2%, n = 6), high enrichment factors (48–78) were obtained. The developed method was successfully applied for analysis of PFCs in 13 drinking water, tap water, river water and plant effluent samples collected from southern China. Perfluorobutane sulfonic acid was detected in one river water with concentration of 0.48 μg/L and 1H,1H,2H,2H-Perfluorooctane sulfonic acid was detected in one river water and two plant effluent samples with concentrations in the range of 0.14–0.67 μg/L.
Показать больше [+] Меньше [-]Waterborne Cu exposure increased lipid deposition and lipogenesis by affecting Wnt/β-catenin pathway and the β-catenin acetylation levels of grass carp Ctenopharyngodon idella Полный текст
2020
Xu, Yi-Chuang | Xu, Yi-Huan | Zhao, Tao | Wu, Li-Xiang | Yang, Shui-Bo | Luo, Zhi
Lipid metabolism could be used as a biomarker for environmental monitoring of metal pollution, including Cu. Given the potential role of the Wnt/β-catenin signaling pathway and acetylation in lipid metabolism, the aim of this study was to investigate the mechanism of Wnt signaling and acetylation mediating Cu-induced lipogenesis. Grass carp Ctenopharyngodon idella, widely distributed freshwater teleost, were used as the model. We found that waterborne Cu exposure increased the accumulation of Cu and lipid, up-regulated lipogenesis, suppressed Wnt signaling, reduced β-catenin protein level and its nuclear location, reduced the sirt1 mRNA levels and up-regulated the β-catenin acetylation level. Further investigation found that Cu up-regulated lipogenesis through Wnt/β-catenin pathway; Cu regulated the β-catenin acetylation, and K311 was the key acetylated residue after Cu incubation. SIRT1 mediated Cu-induced changes of acetylated β-catenin and played an essential role in nuclear accumulation of β-catenin and Cu-induced lipogenesis. Cu facilitated lipid accumulation via the regulation of Wnt pathway by SIRT1. For the first time, our study uncovered the novel mechanism for Wnt/β-catenin pathway and β-catenin acetylation levels mediating Cu-induced lipid deposition, which provided insights into the association between Cu exposure and lipid metabolism in fish and had important environmental implications for monitoring metal pollution in the water by using new biomarkers involved in lipid metabolism.
Показать больше [+] Меньше [-]Acidic conditions enhance the removal of sulfonamide antibiotics and antibiotic resistance determinants in swine manure Полный текст
2020
Lin, Hui | Sun, Wanchun | Yu, Qiaogang | Ma, Junwei
Manure pH may vary depending on its inherent composition or additive contents. However, the effect of pH on the fate of antibiotics and antibiotic resistance determinants in manure remains unclear. This work demonstrated that pH adjustment promoted the removal of different sulfonamide antibiotics (SAs) within swine manure under incubation conditions, which increased from 26–60.8% to 75.0–86.0% by adjusting the initial pH from neutral (7.4) to acidic (5.4–4.8). Acidification was also demonstrated to inhibit the accumulation of antibiotic resistance genes in manure during incubation. Acidified manure contained both lower absolute and relative abundances of sul1 and sul2 than those at a neutral pH like 7.4. Further investigation indicated that acidification promoted the reduction of sul genes in manure by restricting sulfonamide-resistant bacteria (SRB) proliferation and inhibiting IntI1 accumulation. Furthermore, pH adjustment significantly influenced the composition of the manure bacterial community after incubation, which increased Firmicutes and decreased Proteobacteria. Close relationships were observed between pH-induced enrichment of the Firmicutes bacterial phylum, enhanced SAs degradation, and the fates of antibiotic resistance determinants. Overall, lowering the pH of manure promotes the degradation of SAs, decreases sul genes and SRB, and inhibits horizontal sul gene transfer, which could be a simple yet highly-effective manure management option to reduce antibiotic resistance.
Показать больше [+] Меньше [-]