Уточнить поиск
Результаты 381-390 из 4,895
Fungal biodegradation of the N-nitrosodimethylamine precursors venlafaxine and O-desmethylvenlafaxine in water
2019
Llorca, Marta | Castellet-Rovira, Francesc | Farré, María-José | Jaén-Gil, Adrián | Martínez-Alonso, Maira | Rodríguez-Mozaz, Sara | Sarrà, Montserrat | Barceló, Damià
Antidepressant drugs such as Venlafaxine (VFX) and O-desmethylvenlafaxine (ODMVFX) are emerging contaminants that are commonly detected in aquatic environments, since conventional wastewater treatment plants are unable to completely remove them. They can be precursors of hazardous by-products, such as the carcinogenic N-nitrosodimethylamine (NDMA), generated upon water chlorination, as they contain the dimethylamino moiety, necessary for the formation of NDMA. In this study, the capability of three white rot fungi (Trametes versicolor, Ganoderma lucidum and Pleurotus ostreatus) to remove both antidepressants from water and to decrease NDMA formation potential was investigated. Furthermore, transformation by-products (TPs) generated along the treatment process were elucidated and also correlated with their NDMA formation potential.Very promising results were obtained for T. versicolor and G. lucidum, both being able to remove up to 100% of ODMVFX. In the case of VFX, which is very recalcitrant to conventional wastewater treatment, a 70% of removal was achieved by T. versicolor, along with a reduction in NDMA formation potential, thus decreasing the associated problems for human health and the environment. However, the NDMA formation potential remained practically constant during treatment with G. lucidum despite of the equally high VFX removal (70%). This difference was attributed to the generation of different TPs during both fungal treatments. For example, G. lucidum generated more ODMVFX, which actually has a higher NDMA formation potential than the parent compound itself.
Показать больше [+] Меньше [-]Toxicity testing of “eco-friendly” de-icing formulations using Chironomus dilutus
2019
Nutile, Samuel A. | Solan, Megan E.
An influx of chloride ions from road de-icing solutions can result in toxicological effects to organisms in terrestrial and aquatic environments. As such, “eco-friendly” de-icing alternatives are sought to mitigate environmental impacts of de-icing impervious surfaces, while maintaining human safety. While many alternative de-icers are economically impractical for municipal use, the residential commercial market is flooded with de-icing formulations claiming to be “eco-friendly”. Given the little regulation and guidance that surrounds eco-labeling, the meaning of “eco-friendly” remains unclear in the context of biological systems. The objective of the current study was to determine the toxicity of three “eco-friendly” de-icing formulations to Chironomus dilutus using 10 d toxicity tests. The toxicity of these three formulations was compared to a traditional formulation composed entirely of chloride salts. Two of the “eco-friendly” de-icers demonstrated LC₅₀s of 6.61 and 6.32 g/L, which were similar in toxicity to the traditional sodium chloride formulation with a LC₅₀ 6.29 g/L. The comparable toxicities of these formulations is likely due to the presence of chloride salts in each of the “eco-friendly” de-icers. The third “eco-friendly” formulation, a urea-based de-icer, demonstrated toxicity an order of magnitude higher than that of the traditional formulation with an LC₅₀ of 0.63 g/L. While C. dilutus may not have been the intended endpoint in consideration when marketing these products as “eco-friendly”, consideration of how eco-labeling is utilized and the role of environmental scientists in determining the meaning of such claims must be considered to ensure continued and future protection of the environment.
Показать больше [+] Меньше [-]Phthalate exposure increases subclinical atherosclerosis in young population
2019
Su, Ta-Chen | Hwang, Jing-Shiang | Torng, Pao-Ling | Wu, Charlene | Lin, Chien-Yu | Sung, Fung-Chang
The link between phthalate exposure and the risk of subclinical atherosclerosis in young population remains unclear. This study investigated the association between phthalate exposure and subclinical atherosclerosis, in terms of carotid intima-media thickness (CIMT), in young population. From a nationwide mass urine screening for renal health, conducted in 1992–2000 among school children 6–18 years of age in Taiwan, we recruited 789 subjects to participate in the cardiovascular health examination in 2006–2008. Among them, 787 received measurements of 7 urinary phthalate metabolites and CIMT. Results showed both mean and maximal values of CIMT at all segments of carotid arteries significantly increased with the urinary mono-2-ethylhexyl phthalate (MEHP), ∑ di-(2-ethylhexyl) phthalate (DEHP), and mono-n-butyl phthalate (MnBP) in a dose-response relationship after adjustment for multiple linear regression models. Multivariate logistic regression analysis showed that higher quartiles of urinary concentrations of MEHP, ∑DEHP, and MnBP were associated with a higher risk of thicker CIMT. Compared to subjects with the lowest quartile (Q1) of urinary MEHP, the adjusted odds ratios (95% confidence interval) for thicker CIMT among subjects with higher urinary MEHP were 2.13 (1.18–3.84) at Q2, 4.02 (2.26–7.15) at Q3 and 7.39 (4.16–13.12) at the highest Q4. In conclusion, urinary phthalate metabolites of MEHP, ∑DEHP, and MnBP are strongly associated with CIMT in adolescents and young adults in Taiwan.
Показать больше [+] Меньше [-]Bioturbation effects on metal release from contaminated sediments are metal-dependent
2019
Xie, Minwei | Simpson, Stuart L. | Wang, Wen-Xiong
Metal flux measurements inform the mobility, potential bioavailability and risk of toxicity for metals in contaminated sediments and therefore is an important approach for sediment quality assessment. The binding and release of metals that contribute to the net flux is strongly influenced by the presence and behaviors of benthic organisms. Here we studied the effects of bioturbation on the mobility and efflux of metals from multi-metal contaminated sediments that inhabited by oligochaete worms or both worms and bivalves. Presence of bivalves enhanced the release of Mn, Co, Ni and Zn but not for copper and chromium, which is likely due to the high affinities of copper and chromium for the solid phase. Metals in the overlying water were primarily associated with fractions smaller than 10 kDa, and the fractionation of all metals were not affected by the presence of the bivalve. Metal fluxes attributed to different processes were also distinguished, and the bioturbation induced effluxes were substantially higher than the diffusive effluxes. Temporal variabilities in the total net effluxes of Mn, Co, Ni and Zn were also observed and were attributed to the biological activities of the bivalves. Overall, the present study demonstrated that the response of different metals to the same bioturbation behavior was different, resulting in distinct mobility and fate of the metal contaminants.
Показать больше [+] Меньше [-]Congener-specific C10C13 and C14C17 chlorinated paraffins in Chinese agricultural soils: Spatio-vertical distribution, homologue pattern and environmental behavior
2019
Aamir, Muhammad | Yin, Shanshan | Zhou, Yuting | Xu, Chenye | Liu, Kai | Liu, Weiping
A comprehensive spatio-vertical survey of short-chain (SCCPs, C10-13) and medium-chain (MCCPs, C14-17) chlorinated paraffins (CPs) was performed in surface and core soils from Chinese nation-wide agricultural lands in 2016, and a total of 48 congener groups were measured. The shorter carbon chain C10-11 in SCCP and C14-15 in MCCP homologue groups, and the lower chlorinated congeners (Cl5-7) for both CP groups were predominant. The ∑SCCP and ∑MCCP concentrations in surface soils ranged from 39 to 1609 ng/g and 127–1969 ng/g, dry weight (dw), respectively. The spatial distribution trend showed that SCCP congener groups with relatively low octanol-water partition coefficient (KOW) and octanol-air partition coefficient (KOA) are uniformly distributed across surface soils compared to MCCP congener groups. Significant relationships were observed between the spatial variation of SCCP concentrations and the driving factors responsible for dispersion and deposition. The distribution behavior of SCCPs and MCCPs in highland and plain surface soils showed an increasing trend of MCCP concentrations with elevation, indicating the “mountain cold-trapping effect”. Vertical distribution profile revealed similar homologue group composition patterns of SCCP and MCCP congener groups as those of surface soils. Furthermore, the penetration potential ratios (r) of chlorine and carbon atoms of CPs demonstrated that the lower chlorinated (Cl5-7) and the shorter carbon chain (C10-13) congener groups are more prone to vertical movement into deeper soil layers compared to the longer carbon chain (C14-17) and highly chlorinated (Cl8-10) congener groups.
Показать больше [+] Меньше [-]Elucidating the biodegradation mechanism of tributyl phosphate (TBP) by Sphingomonas sp. isolated from TBP-contaminated mine tailings
2019
Liu, Jia | Lin, Hai | Dong, Yingbo | Li, Bing
Tributyl phosphate (TBP) is recognised as a global environmental contaminant because of its wide use in floatation reagents, nuclear fuel reprocessing and plasticisers. This contaminant is hardly degraded by hydrolysis in the environment due to its special physicochemical properties. In this study, one TBP-degrading strain was isolated from TBP-contaminated abandoned mine tailings, and 16S rRNA identification revealed that the strain belonged to the genus Sphingomonas. Results validated that the strain could utilise TBP as the sole carbon source, and vitamin was not the essential factor for its growth. Liquid chromatography time-of-flight mass spectrometry analysis identified di-n-butyl phosphate (DnBP) and mono-n-butyl phosphate (MnBP) as the intermediate metabolites for TBP biodegradation. No obvious change in carbon and hydrogen isotope composition was observed in biodegradation processes (cell suspension and crude extract degradation), which indicated that the first irreversible bond cleavage did not involve carbon or hydrogen. Hence, the TBP degradation scheme by Sphingomonas sp. proposed that the first irreversible step of TBP transferred to DnBP would lead to PO bond cleavage. This study combined the identification of products and isotope fractionation in substrates to investigate the transformation mechanism, thereby providing an eco-friendly and cost-effective way for the in situ bioremediation of TBP-contaminated sites by the isolated TBP degradation strain.
Показать больше [+] Меньше [-]Characterization of a Dibenzofuran-degrading strain of Pseudomonas aeruginosa, FA-HZ1
2019
Ali, Fawad | Hu, Haiyang | Wang, Weiwei | Zhou, Zikang | Shah, Syed Bilal | Xu, Ping | Tang, Hongzhi
Dibenzofuran (DBF) derivatives have caused serious environmental problems, especially those produced by paper pulp bleaching and incineration processes. Prominent for its resilient mutagenicity and toxicity, DBF poses a major challenge to human health. In the present study, a new strain of Pseudomonas aeruginosa, FA-HZ1, with high DBF-degrading activity was isolated and identified. The determined optimum conditions for cell growth of strain FA-HZ1 were a temperature of 30 °C, pH 5.0, rotation rate of 200 rpm and 0.1 mM DBF as a carbon source. The biochemical and physiological features as well as usage of different carbon sources by FA-HZ1 were studied. The new strain was positive for arginine double hydrolase, gelatinase and citric acid, while it was negative for urease and lysine decarboxylase. It could utilize citric acid as its sole carbon source, but was negative for indole and H2S production. Intermediates of DBF 1,2-dihydroxy-1,2-dihydrodibenzofuran, 1,2-dihydroxydibenzofuran, 2-hydroxy-4-(3′-oxo-3′H-benzofuran-2′-yliden)but-2-enoic acid, 2,3-dihydroxybenzofuran, 2-oxo-2-(2′-hydrophenyl)lactic acid, and 2-hydroxy-2-(2′-hydroxyphenyl)acetic acid were detected and identified through liquid chromatography-mass analyses. FA-HZ1 metabolizes DBF by both the angular and lateral dioxygenation pathways. The genomic study identified 158 genes that were involved in the catabolism of aromatic compounds. To identify the key genes responsible for DBF degradation, a proteomic study was performed. A total of 1459 proteins were identified in strain FA-HZ1, of which 100 were up-regulated and 104 were down-regulated. A novel enzyme “HZ6359 dioxygenase”, was amplified and expressed in pET-28a in E. coli BL21(DE3). The recombinant plasmid was successfully constructed, and was used for further experiments to verify its function. In addition, the strain FA-HZ1 can also degrade halogenated analogues such as 2, 8-dibromo dibenzofuran and 4-(4-bromophenyl) dibenzofuran. Undoubtedly, the isolation and characterization of new strain and the designed pathways is significant, as it could lead to the development of cost-effective and alternative remediation strategies. The degradation pathway of DBF by P. aeruginosa FA-HZ1 is a promising tool of biotechnological and environmental significance.
Показать больше [+] Меньше [-]Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review
2019
Luo, Xiaosan | Bing, Haijian | Luo, Zhuanxi | Wang, Yujun | Jin, Ling
Atmospheric particulate matter (PM) pollution and soil trace metal (TM) contamination are binary environmental issues harming ecosystems and human health, especially in the developing China with rapid urbanization and industrialization. Since PMs contain TMs, the air-soil nexus should be investigated synthetically. Although the PMs and airborne TMs are mainly emitted from urban or industrial areas, they can reach the rural and remote mountain areas owing to the ability of long-range transport. After dry or wet deposition, they will participate in the terrestrial biogeochemical cycles of TMs in various soil-plant systems, including urban soil-greening trees, agricultural soil-food crops, and mountain soil-natural forest systems. Besides the well-known root uptake, the pathway of leaf deposition and foliar absorption contribute significantly to the plant TM accumulation. Moreover, the aerosols can also exert climatic effects by absorption and scattering of solar radiation and by the cloud condensation nuclei activity, thereby indirectly impact plant growth and probably crop TM accumulation through photosynthesis, and then threat health. In particular, this systematic review summarizes the interactions of PMs-TMs in soil-plant systems including the deposition, transfer, accumulation, toxicity, and mechanisms among them. Finally, current knowledge gaps and prospective are proposed for future research agendas. These analyses would be conducive to improving urban air quality and managing the agricultural and ecological risks of airborne metals.
Показать больше [+] Меньше [-]Endogenous release of metals with dissolved organic carbon from biochar: Effects of pyrolysis temperature, particle size, and solution chemistry
2019
Hameed, Rashida | Cheng, Leilei | Yang, Kun | Fang, Jing | Lin, Daohui
Metals are released from biochar (BC) in either the free or dissolved organic carbon (DOC)-combined form. The complexation of metals with DOC influences their toxicity and bioavailability in the environment. The endogenous release of metal species with heterogeneous DOC from BC is very complex; this process has been neglected and remains unaddressed in the literature to date. In this study, the yield and chemical properties of labile DOC from BC were characterized, and the release of endogenous metal/metalloid elements (K, Mg, Mn, Fe, Al, Cu, and Si) and their species from BC with various pyrolysis temperatures and particle sizes were systematically investigated under various solution chemistries. The results showed that pyrolysis temperature of BC significantly influenced the yield and composition of DOC and DOC-metal/metalloid complexes, while particle size had lower impact. The yield of BC-derived DOC significantly decreased and the components gradually changed from low-molecular weight and low-aromaticity hydrophilic humic acid-like substances to complex high-molecular weight and high-aromaticity hydrophobic substances as pyrolysis temperature increased from 200 to 700 °C. The release of total dissolved metals decreased with increasing pyrolysis temperature, while the highest total dissolved Si was released from BC with the moderate pyrolysis temperature (500 °C). The metal elements were mainly released in the DOC-combined form, while the released Si was mainly in the free form in the neutral water environment. The release of DOC increased while that of dissolved metals decreased with increasing solution pH. The release of total dissolved metals/metalloids increased but the ratio of the DOC-combined metals/metalloids decreased with increasing solution ionic strength. These results provide new insight into the understanding of endogenous metal/metalloid release from BC in the natural environment.
Показать больше [+] Меньше [-]High-throughput transcriptomics: Insights into the pathways involved in (nano) nickel toxicity in a key invertebrate test species
2019
Gomes, Susana I.L. | Roca, Carlos P. | Scott-Fordsmand, Janeck J. | Amorim, Mónica J.B.
Nickel nanoparticles (NiNPs) have an estimated production of ca. 20 tons per year in the US. Nickel has been risk-assessed for long in Europe, but not NiNPs, hence the concern for the environment. In the present study, we focused on investigating the mechanisms of toxicity of NiNPs and the comparison to NiNO3. The high-throughput microarray for the soil ecotox model Enchytraeus crypticus (Oligochaeta) was used. To anchor gene to phenotype effect level, organisms were exposed to reproduction effect concentrations EC20 and EC50, for 3 and 7 days. Results showed commonly affected pathways between NiNPs and NiNO3, including increase in proteolysis, apoptosis and inflammatory response, and interference with the nervous system. Mechanisms unique to NiNO3 were also observed (e.g. glutathione synthesis). No specific mechanisms for NiNPs were found, which could indicate that longer exposure period (>7 days) is required to capture the peak response to NiNPs. A mechanisms scheme is assembled, showing both common and unique mechanisms to NiNO3 and NiNPs, providing an important framework for further, more targeted, studies.
Показать больше [+] Меньше [-]