Уточнить поиск
Результаты 391-400 из 61,240
Air Pollution in the Capital City of Bangladesh: Its Causes and Impacts on Human Health
2020
Khuda, K. E.
Air is one of the precious natural resources that are essential for animal including the human being. It is also the most important gift of nature without which human cannot survive. Pollution in the urban areas like Cairo, Delhi, Mexico and Dhaka far surpasses the acceptable limits set by the World Health Organization (WHO). Urban air pollution in the South Asian region is approximated to cause more than 300,000 deaths and billions of cases of respiratory disease per year. In Bangladesh, about 200000 people die each year due to the air pollution as the WHO estimates in 2018. The air in Dhaka City, the capital of Bangladesh, has become worsen to a level that the city has been identified as one of the most polluted cities in the world. Taking the problem with utmost importance into consideration as it is related with the public health, air pollution is being treated as one of the priority issues. The level of pollution at roadside environment is deeply connected with the density of motor vehicles plying on the roads. This situation is expected to worsen further in the upcoming days due to the increasing number of motor vehicles resulted from rapid economic growth and industrialization. This paper aims to provide the present statues of the air pollution in Dhaka city and some specific recommendations for making the city as a better living place through reducing its air pollution.
Показать больше [+] Меньше [-]Synthesis and Characterization of Zero Valent Iron Nanoparticles for Textile Wastewater Treatment
2020
Nigam Ahuja, N. | Ansari, A.A. | Rajput, R. | Singh, P.
Textile manufacturing industry produces a huge amount of pollutants from its textile dyeing units. To combat the problem of water pollution, various processes are being already adopted by textile industries to treat wastewater before its discharge into the nearby environment. However, the inadequate traditional treatments are leading towards the development of different technologies with major concern on material’s high efficacy. One of the newest advancement in this area is nanotechnology. The zero valent iron nanoparticles (nZVI) are gaining extreme importance, due to its potential capabilities of reducing chemical substances, dye colour and other constituents from the waste effluent. In the present article, synthesis of nZVI particles was carried out by borohydride chemical reduction method using ferrous heptahydrate sulphate salt. Its characterization such as surface morphology and structure was analyzed by using X-Ray diffraction (XRD), Scanning Electron Microscope (SEM) and Brunauer- Emmett-Teller method (BET). Further, the stability of nanoparticles was also investigated via chemical and thermal processes at different pH ranges and temperatures. The results revealed that the synthesized nanoparticles were as per the available literature in terms of size, surface morphology, structure & stability. Hence, ready for the batch experimental studies on laboratory scale.
Показать больше [+] Меньше [-]Synthesis and Photocatlytic Application of Drinking Water Treatment Sludge @ TiO2 Composite for Degradation of Methylene Blue Dye
2020
Rashed, M.N. | El Taher, M. A. | Fadlalla, S. M. M.
Sludge/TiO2 composite was synthesized from drinking water treatment sludge, as a waste material and TiO2 , by a sol- gel method. Various sludge adsorbent / TiO2 ratios (1:1, 1:2 and 2:1 w/w) were prepared, and characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), X-ray Fluorescence (XRF), and BET. The prepared composites were applied successfully for photodegradation of methylene blue (MB) dye from a solution. The photocatalytic degradation of MB dye was investigated using UV irradiation, or UV/H2O2. Initial dye concentration, solution pH, composite dosage, and UV irradiation time were applied to study the optimum conditions for MB degradation. The results revealed the highest MB dye degradation with composite (2:1). It was found that the maximum MB degradation efficiency was at pH=7, 4 h irradiation time, 0.125 g composite dose, and 50 ppm initial dye concentration. MB removal efficiency was 95.7% using UV irradiation, and 99.8% of that using UV/ H2O2. The rate of MB dye degradation followed the first order kinetics. Results from this study offer the best conditions for recycling drinking water treatment sludge, and use it for wastewater treatment.
Показать больше [+] Меньше [-]Evaluating the Accumulation and Consumption Hazard Risk of Heavy Metals in the Fish Muscles of Species Living in the Waters of the Persian Gulf, Iran
2020
Norouzi, M.
The aim of this study was to determine the levels of Cd, As, Hg, Pb, and Cr in the edible part of eleven most consumed fish species collected from the north-east coast of Persian Gulf, Iran, during 2017. An inductively coupled plasma atomic emission spectroscopy (ICP-AES) instrument was used to measure the concentration of heavy metals. The results were compared within acceptable limits for human consumption set by various health institutions. The order of heavy metals about total accumulation was Cr>As>Pb> Cd> Hg. The mean heavy metals concentrations of fish species muscle decreased in the order of Acanthopagrus latus> Planiliza subviridis> Lutjanus lemniscatus > Alectis indica> Epinephelus areolatus> Otolithes ruber> Epinephelus chlorostigma> Lethrinus crocineus> Euryglossa orientalis > Cynoglossus arel > Grammoplites suppositus. Probably the difference in the concentration of metals between samples depends on fish species, diet, and habitat. These species were declared to exhibit a low probability of causing non-cancerous diseases. The comparison of the accumulation and hazard risk of consuming the five heavy metals existing in the eleven species that were sampled from the coasts of Khuzestan, Maah-shar Harbour, with the WHO and USEPA guidelines showed that although consuming these fish species does not threaten the consumers' health, pregnant women and children should be cautious about consuming them. The HI was calculated for 70 kg body weight of adults and 14.5 kg body weight of children. The amount of optimal consumption is different for different weights of consumers.
Показать больше [+] Меньше [-]Application of a Decision-Making Model to Reduce CO2 Emissions in Iran (Case Study: CHP-CCS technology and renewable energy)
2020
Alinejad, H. R. | Behbahaninia, A. | Mackialeagha, M.
Iran is one of the largest producers of CO2 in the world. Therefore, in order to lessen its greenhouse gas production, thus complying with the Intended Nationally Determined Contributions (INDCs), it should cut its CO2 emissions by about 4% by 2030, compared to 2010. Hence this paper aims at finding an early solution to this problem. Because the country's electricity sector is responsible for the highest annual CO2 emissions, the paper focuses on two technologies that can effectively reduce CO2 emissions from the electricity sector, namely renewable energy and Combined Heat And Power Plants (CHP) with CO2 capture and storage (CCS). Further it assesses adoption of these technologies and their impact on Iran's annual CO2 emission by 2030, considering two main scenarios: the optimistic scenario (OS) which assumes that the policies of the Sixth Development Plan (SDP) will be fully realized as well as the fair scenario (FS) which believes that SDP policies will be followed to some extent by the end of the program. To this end, twenty six micro-factors, affecting CO2 emissions, have been identified and classified into five different groups. The detected micro factors are then introduced to a Gradient Boosting Decision Tree (GBDT) Algorithm to identify the most important specific microscopic factors in Iran. The final detected micro-factors have finally been included in a Gaussian regression model to predict CO2 emissions in Iran by 2030. The findings suggest that if Iran intends to comply with the INDCs, CHP-CCS technology is a solution that has an early return, compared to renewable technologies.
Показать больше [+] Меньше [-]Convenient and Efficient Elimination of Heavy Metals from Wastewater Using Smart Pouch with Biomaterial
2019
Malik, R. | Saini, N. | Ahlawat, S. | Singhal, S. | Lata, S.
A newly developed Smart Pouch with enclosed biomaterial (Aloe vera and coconut husk powder) has been experimented for elimination of heavy metals i.e. (Pb2+, Cu2+, Ni2+ and Zn2+) from wastewater. The effect of concentration, pH, temperature, contact duration etc. was investigated using batch experiments which resulted that the Pouch may be accepted for convenient, efficient and low-cost accumulation of several heavy metals simultaneously from waste water. The maximum Pb removal was 99.99%, 93.21% for Cu, and for Ni, it was 91.97% whereas for Zn, 86.41% was obtained and also, the uptake capacity of pouch was quite sensitive towards initial metal concentration in the studied range of 10-200mg/L present in wastewater. The findings were further interpreted by quantum chemical study as theoretical support, various adsorption isotherms, FTIR, SEM, XRD, and physiochemical properties of metal ions to justify the synergized performance of new Pouch. A good correlation was found between experimental methods and theoretical findings.
Показать больше [+] Меньше [-]Study of seasonal and spatial variability among Benzene, Toluene, and p-Xylene (BTp-X) in ambient air of Delhi, India
2019
Garg, A. | Gupta, N.C. | Tyagi, S.K.
This study was carried out to analyze the variations of Benzene, Toluene, and para- Xylene (BTp-X) present in the urban air of Delhi. These pollutants can enter into the human body through various pathways like inhalation, oral and dermal exposure posing adverse effects on human health. Keeping in view of the above facts, six different locations of Delhi were selected for the study during summer and winter seasons (2016-2017). The concentrations of BTp-X on online continuous monitoring system were analyzed by chromatographic separation in the gaseous phase followed by their detection using a Photo Ionization Detector (PID). The concentrations of BTp-X were found maximum at a high traffic intersection area as 68.35±48.26 µg/m3 and 86.84±32.55 µg/m3 in summer and winter seasons respectively and minimum at a residential area as 4.34±2.48 µg/m3 and 15.42±9.8 µg/m3 in summer and winter seasons respectively. The average BTp-X concentrations of summer and winter seasons were found as 9.88, 20.68, 28.52, 49.75, 64.04, and 77.59 µg/m3 at residential, institutional, commercial, low traffic intersection, moderate traffic intersection and high traffic intersection areas respectively. Clearly, it has been found that the concentrations of these compounds were more on the traffic areas indicating that the vehicles are the major emission source. Hence, it may be concluded that the number of vehicles along with the high traffic congestion on the city streets and roads results in more accumulation of aromatic compounds and deteriorate the urban air quality.
Показать больше [+] Меньше [-]Influence of Copper Oxide Nanoparticle on Hematology and Plasma Biochemistry of Caspian Trout (Salmo trutta caspius), Following Acute and Chronic Exposure
2019
Kaviani, E. F. | Naeemi, A. S. | Salehzadeh, A.
The Caspian trout is an endangered and quite vulnerable fish, considered for a natural protection program in the southern area of the Caspian Sea. Copper oxide nanoparticles (CuO-NPs) are toxic substances, which induce oxidative stress, not to mention other pathophysiological states. The toxicity of nanoparticles on fish needs more characterization for short- and long-term effects. Thus, the present paper examines the acute and chronic effects of CuO-NPs on hematology and plasma biochemistry of juvenile Caspian trout. After determining the lethal concentrations (LC50), juvenile Caspian trout is exposed to 0.1 LC5096 CuO-NPs for 28 days in three replicates. The blood samples are then collected from fish after 24, 48, 72, and 96 hours as well as 1, 2, 3, and 4 weeks of exposure to the CuO-NPsto deal with short- and long-term effects, respectively. Analysis of these samples shows that some hematological factors like hemoglobin (Hb), red blood cells (RBC), and hematocrit (Hct) are significantly increased after acute exposure, compared to the control group (p<0.05). The number of white blood cells (WBC), neutrophilis, and monocytes are also increased after acute and chronic exposure with significant differences (p< 0.05). Furthermore, the levels of lactate dehydrogenase after acute and alkaline phosphatase along with aspartate aminotransferase after acute and chronic exposure are significantly increased (p<0.05). Thus, results indicate that the presence of even a tiny amount of CuO-NPs can affect most haematological and metabolic enzymes of the Caspian trout in the short and long-term exposure. It is therefore essential to prevent these nanomaterials from entering the aquatic environment.
Показать больше [+] Меньше [-]Verification of IVE Model for SAIPA Co. Fleet Emission
2019
Alipourmohajer, Sh. | Rashidi, Y. | Atabi, F.
To determine the amount of air pollutants, produced by Iranian automakers, and compare it with old and retrofitted vehicles have become one of the important tools of urban management. The present research uses International Vehicle Emission (IVE) modeling software in order to verify SAIPA Co. fleet emissions, based on Euro 4 emission standard (SAIPA Co. recognized as a superior Iranian brand in vehicle industry). There has been attempts to determine pollutant emission from Saipa Co.-manufactured cars in the city of Tehran, in accordance with Tehran Driving Cycle along with modeling and lab results which have over 90% conformity with modeling and lab results of New European Driving Cycle. According to ISQI’s 100,000-km test results, the amount of CO2 emission modeling from X100 and Tiba2’s has been about 160 gr/km, which has been within the range, whereas the modeled CO2 emission rate has been 232 gr/km in TDC, i.e., 1.5 times more than laboratory test, due to different driving cycle usage. Significant differences between the values obtained in the emission lab and modeling at New European Driving Cycle, Tehran Driving Cycle, and Tehran Air Quality Control Company report, indicate that relying on hypothetical situation leads to inapplicable emissions value from light vehicles.
Показать больше [+] Меньше [-]Monitoring of SO2 column concentration over Iran using satellite-based observations during 2005-2016
2019
Salmabadi, H. | Saeedi, M.
For the first time, sulfur dioxide concentration was monitored between 2005 and 2016 over Iran which is among the countries with a high SO2 emission rate in the world. To that end, SO2 column concentration at Planetary Boundary Layer (PBL) from Ozone Monitoring Instrument (OMI) was analyzed. OMI is a sensor onboard the Aura satellite which can measure daily SO2 concentration on the global scale. From OMI maps, 19 notable SO2 hotspots were detected over Iran. The results indicate that the most elevated level of SO2 among these 19 hotspots belong to Khark Island and Asaluye in Bushehr province, southwest of Iran. Annual trend analysis shows that SO2 concentration has been slightly augmented during 2005-2016 over this country. Distribution analysis of SO2 concentration over Iran showed that the most polluted provinces are Bushehr, Khuzestan and Ilam lied in the southwest of Iran. On the contrary, the lowest level of SO2 has observed over northwest of Iran at West and East Azerbaijan and Ardabil provinces. The correlation coefficient between total energy production in Iran and SO2 concentration from 2005 to 2016 is as high as ~0.7. Hence, it can be derived that energy production, most notably production of crude oil, plays a pivotal role in SO2 concentration over Iran.
Показать больше [+] Меньше [-]