Уточнить поиск
Результаты 401-410 из 6,548
Per- and polyfluoroalkyl substances exert strong inhibition towards human carboxylesterases Полный текст
2020
Liu, Yong-Zhe | Pan, Li-Hua | Bai, Yu | Yang, Kun | Dong, Pei-Pei | Fang, Zhong-Ze
PFASs are highly persistent in both natural and living environment, and pose a significant risk for wildlife and human beings. The present study was carried out to determine the inhibitory behaviours of fourteen PFASs on metabolic activity of two major isoforms of carboxylesterases (CES). The probe substrates 2-(2-benzoyl-3-methoxyphenyl) benzothiazole (BMBT) for CES1 and fluorescein diacetate (FD) for CES2 were utilized to determine the inhibitory potentials of PFASs on CES in vitro. The results demonstrated that perfluorododecanoic acid (PFDoA), perfluorotetradecanoic acid (PFTA) and perfluorooctadecanoic acid (PFOcDA) strongly inhibited CES1 and CES2. The half inhibition concentration (IC₅₀) value of PFDoA, PFTA and PFOcDA for CES1 inhibition was 10.6 μM, 13.4 μM and 12.6 μM, respectively. The IC₅₀ for the inhibition of PFDoA, PFTA and PFOcDA towards CES2 were calculated to be 9.56 μM, 17.2 μM and 8.73 μM, respectively. PFDoA, PFTA and PFOcDA exhibited noncompetitive inhibition towards both CES1 and CES2. The inhibition kinetics parameters (Kᵢ) were 27.7 μM, 26.9 μM, 11.9 μM, 4.04 μM, 29.1 μM, 27.4 μM for PFDoA-CES1, PFTA-CES1, PFOcDA-CES1, PFDoA-CES2, PFTA-CES2, PFOcDA-CES2, respectively. In vitro-in vivo extrapolation (IVIVE) predicted that when the plasma concentrations of PFDoA, PFTA and PFOcDA were greater than 2.77 μM, 2.69 μM and 1.19 μM, respectively, it might interfere with the metabolic reaction catalyzed by CES1 in vivo; when the plasma concentrations of PFDoA, PFTA and PFOcDA were greater than 0.40 μM, 2.91 μM, 2.74 μM, it might interfere with the metabolic reaction catalyzed by CES2 in vivo. Molecular docking was used to explore the interactions between PFASs and CES. In conclusion, PFASs were found to cause inhibitory effects on CES in vitro, and this finding would provide an important experimental basis for further in vivo testing of PFASs focused on CES inhibition endpoints.
Показать больше [+] Меньше [-]Occurrence, removal, and environmental risk of phthalates in wastewaters, landfill leachates, and groundwater in Poland Полный текст
2020
Kotowska, Urszula | Kapelewska, Justyna | Sawczuk, Róża
Phthalates or phthalic acid esters (PAEs) are chemical compounds whose use is exceptionally widespread in everyday materials but, at the same time, have been proven to have harmful effects on living organisms. Effluents from municipal wastewater treatment plants (WWTP) and leachates from municipal solid waste (MSW) landfills are important sources of phthalates with respect to naturally occurring waters. The main aim of this research was determination, mass loads, removal rates and ecological risk assessment of eight phthalates in municipal wastewaters, landfill leachates and groundwater from Polish WWTPs and MSW landfills. Solid-phase microextraction and gas chromatography with mass spectrometry were used for the extraction and determination of analytes. Summed up concentrations of eight phthalates ranged from below LOD to 596 μg/L in influent wastewater with the highest concentration found for bis-2-ethylhexyl phthalate (DEHP) (143 μg/L). The average degree of phthalate removal varies depending on the capacity of a given treatment plant with larger treatment plants coping better than smaller ones. The highest treatment efficiency for all tested treatment plants, over 90%, was reported for dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall concentrations of phthalates in leachates ranged from below LOD to 303 μg/L while the highest maximum concentration was registered for DEHP (249 μg/L). Overall concentrations of phthalic acid esters in groundwater from upstream monitoring wells ranged from below LOD to 1.8 μg/L and from LOD to 27.9 μg/L in samples from wells downstream of MSW landfills. The obtained data shows that diisobutyl phthalate (DIBP), dibutyl phthalate (DBP), DEHP, and diisononyl phthalate (DINP) pose a high risk for all trophic levels being considered in effluent wastewaters. In the case of groundwater high environmental risk was recorded for DBP and DEHP for all tested trophic levels. Phthalates, in concentrations that pose a high environmental risk, are present in Polish municipal after-treatment wastewater as well as in groundwater under municipal solid waste landfills.
Показать больше [+] Меньше [-]Investigation of the spatially varying relationships of PM2.5 with meteorology, topography, and emissions over China in 2015 by using modified geographically weighted regression Полный текст
2020
Yang, Qian | Yuan, Qiangqiang | Yue, Linwei | Li, Tongwen
PM₂.₅ pollution is caused by multiple factors and determining how these factors affect PM₂.₅ pollution is important for haze control. In this study, we modified the geographically weighted regression (GWR) model and investigated the relationships between PM₂.₅ and its influencing factors. Experiments covering 368 cities and 9 urban agglomerations were conducted in China in 2015 and more than 20 factors were considered. The modified GWR coefficients (MGCs) were calculated for six variables, including two emission factors (SO₂ and NO₂ concentrations), two meteorological factors (relative humidity and lifted index), and two topographical factors (woodland percentage and elevation). Then the spatial distribution of MGCs was analyzed at city, cluster, and region scales. Results showed that the relationships between PM₂.₅ and the different factors varied with location. SO₂ emission positively affected PM₂.₅, and the impact was the strongest in the Beijing–Tianjin–Hebei (BTH) region. The impact of NO₂ was generally smaller than that of SO₂ and could be important in coastal areas. The impact of meteorological factors on PM₂.₅ was complicated in terms of spatial variations, with relative humidity and lifted index exerting a strong positive impact on PM₂.₅ in Pearl River Delta and Central China, respectively. Woodland percentage mainly influenced PM₂.₅ in regions of or near deserts, and elevation was important in BTH and Sichuan. The findings of this study can improve our understanding of haze formation and provide useful information for policy-making.
Показать больше [+] Меньше [-]Iron oxide-mediated photo-Fenton catalysis in the inactivation of enteric bacteria present in wastewater effluents at neutral pH Полный текст
2020
Fernández, L. | González-Rodríguez, J. | Gamallo, M. | Vargas-Osorio, Z. | Vázquez-Vázquez, C. | Piñeiro, Y. | Rivas, J. | Feijoo, G. | Moreira, M.T.
The pressure on natural water resources associated with increasing water scarcity highlights the value of using reclaimed water through the development of efficient and environmentally friendly treatment technologies. In this work, the use of magnetic nanoparticles in photo-Fenton catalysis for water disinfection was considered to inactivate natural enteric bacteria present in municipal wastewater effluents under white light and neutral pH. The most recommended ranges were evaluated in key variables such as the loading and composition of nanoparticles (NPs), hydrogen peroxide (H₂O₂) concentration, the light source (UV and visible) and treatment time were evaluated in wastewater disinfection expressed in terms of total coliforms and Escherichia coli colony forming units (CFU). The magnetic separation of NPs allowed the disinfection process to be carried out in different cycles, facilitating the recovery of the nanocatalyst and avoiding its discharge with the treated effluent.
Показать больше [+] Меньше [-]Industrial development as a key factor explaining variances in soil and grass phyllosphere microbiomes in urban green spaces Полный текст
2020
Yan, Zhen-Zhen | Chen, Qing-Lin | Zhang, Yu-Jing | He, Ji-Zheng | Hu, Hang-Wei
Microbiota in urban green spaces underpin ecosystem services that are essential to environmental health and human wellbeing. However, the factors shaping the microbial communities in urban green spaces, especially those associated with turf grass phyllosphere, remain poorly understood. The lack of this knowledge greatly limits our ability to assess ecological, social and recreational benefits of urban green spaces in the context of global urbanization. In this study, we used amplicon sequencing to characterize soil and grass phyllosphere bacterial communities in 40 urban green spaces and three minimally disturbed national parks in Victoria, Australia. The results indicated that urbanization might have shown different impacts on soil and grass phyllosphere microbial communities. The bacterial diversity in soil but not in grass phyllosphere was significantly higher in urban green spaces than in national parks. Principal coordinate analysis revealed significant differences in the overall patterns of bacterial community composition between urban green spaces and national parks for both soil and grass phyllosphere. Industrial development, as represented by the number of industries in the region, was identified as a key driver shaping the bacterial community profiles in urban green spaces. Variation partitioning analysis suggested that industrial factors together with their interaction with other factors explained 20% and 28% of the variances in soil and grass phyllosphere bacterial communities, respectively. The findings highlight the importance of industrial development in driving the spatial patterns of urban microbiomes, and have important implication for the management of microbiomes in urban green spaces.
Показать больше [+] Меньше [-]Experimental and numerical study on underwater noise radiation from an underwater tunnel Полный текст
2020
Song, Xiaodong | Zhang, Xuguang | Xiong, Wen | Guo, Zhiming | Wang, Bao
The hydro-acoustic noise radiating from underwater tunnels during vehicle passage may be harmful to aquatic fauna, and this is a particular concern for endangered species. Therefore, the effects of underwater noise radiation and propagation on aquatic biodiversity must be investigated. In this study, the dynamic response of the sediment and tunnel structure in the Yangtze River in China was explored by conducting a field test, and the associated noise radiation from the tunnel was recorded and investigated. A three-dimensional numerical model was then developed to simulate the vibration of the tunnel-sediment coupling system induced by random traffic-flow models. Next, a modal acoustic transfer vector-based method was used to predict underwater noise radiation by use of a three-dimensional finite-element acoustic model. Finally, the accuracy of the simulated results was verified by comparison with measurements. The results showed that the noise radiation induced by passing vehicles was approximately 14 dB greater than the background noise, with a main frequency range of 12–25 Hz. The random traffic-flow model had obvious influence of the simulated noise level above 20 Hz. Vehicle-induced underwater noise may thus have a direct effect on fish species that can perceive low-frequency sound pressure. The proposed method can be used for further investigation of methods to reduce the effect of underwater noise on aquatic fauna, especially endangered species.
Показать больше [+] Меньше [-]Inhibitory effect of microplastics on soil extracellular enzymatic activities by changing soil properties and direct adsorption: An investigation at the aggregate-fraction level Полный текст
2020
Yu, Hong | Fan, Ping | Hou, Junhua | Dang, Qiuling | Cui, Dongyu | Xi, Beidou | Tan, Wenbing
Microplastics (MPs), as a new type of environmental pollutant, pose a serious threat to soil ecosystems. The activities of soil extracellular enzymes produced by microorganisms are the potential sensitive indicators of soil quality. However, little is known about the response mechanism of enzyme activities toward MPs on a long-term scale. Moreover, information on differences in enzyme activities across different soil aggregates is lacking. In this study, 150 days of incubation experiments and soil aggregate fractionation were combined to investigate the influence of MPs on extracellular enzyme activities in soil. 28% concentration of polyethylene with size 100 μm was adopted in the treatments added with MPs. The results show that MPs inhibited enzyme activities through changing soil nutritional substrates and physicochemical properties or through adsorption. Moreover, MPs competed with soil microorganisms for physicochemical niches to reduce microbial activity and eventually, extracellular enzyme activity. Enzyme activities in different aggregate-size fractions responded differently to the MPs exposure. The catalase in the coarse particulate fraction and phenol oxidase and β-glucosidase in the micro-aggregate fraction exerted the greatest response. With comparison, urease, manganese peroxidase, and laccase activities showed the greatest responses in the non-aggregated silt and clay fraction. These observations are believed to stem from differences in the key factors determining the enzyme activities in different aggregate-size fractions.The inhibitory pathway of microplastics on activities of extracellular enzymes in soil varies significantly across different aggregate fractions.
Показать больше [+] Меньше [-]Reduced bioavailability of polycyclic aromatic hydrocarbons (PAHs) in sediments impacted by carbon manufacturing plant effluent: Evaluation by ex situ passive sampling method Полный текст
2020
Endo, Satoshi | Yoshimura, Mitsuki | Kumata, Hidetoshi | Uchida, Masao | Yabuki, Yoshinori | Nakata, Haruhiko
Potential risks of polycyclic aromatic hydrocarbons (PAHs) in sediments of a Japanese bay contaminated by carbon manufacturing plant effluent were evaluated by calculating toxicity units (TUs). TUs calculated from the measured whole-sediment concentrations (Cwhole) were often higher than or close to 1, signaling a possible toxicity concern to benthic organisms. In contrast, TUs based on the freely dissolved pore water concentrations (Cfree) measured by an ex-situ passive sampling method with polyethylene strips were 0.0007–0.005, much lower than 1, indicating no effect. We also found that the fractions of black carbon in sediments of the contaminated bay were significantly higher than those of reference sites. Overall, we conclude that carbon manufacturing plant effluent substantially increases Cwhole of PAHs in sediments but also increases the fraction of carbonaceous particles that strongly retain PAHs. As a combined result, bioavailable concentrations (as expressed by pore water Cfree) of PAHs do not increase as much as Cwhole. The results of this study indicate that ecotoxicological risks of PAH contamination by carbon manufacturing plants should be evaluated by directly measuring pore water Cfree instead of Cwhole.
Показать больше [+] Меньше [-]Crop-dependent root-microbe-soil interactions induce contrasting natural attenuation of organochlorine lindane in soils Полный текст
2020
Feng, Jiayin | Shentu, Jue | Zhu, Yanjie | Tang, Caixian | He, Yan | Xu, Jianming
Plant-specific root-microbe-soil interactions play an indisputable role in microbial adaptation to environmental stresses. However, the assembly of plant rhizosphere microbiomes and their feedbacks in modification of pollution alleviation under organochlorine stress condition is far less clear. This study examined the response of root-associated bacterial microbiomes to lindane pollution and compared the dissipation of lindane in maize-cultivated dry soils and rice-cultivated flooded soils. Results showed that lindane pollution dramatically altered the microbial structure in the rhizosphere soil of maize but had less influence on the microbial composition in flooded treatments regardless of rice growth, when the reductive dechlorination of lindane was actively coupled with natural redox processes under anaerobic conditions. After 30 days of plant growth, lindane residues dissipated much faster in anaerobic than in aerobic environments, with only 1.08 mg kg⁻¹ lindane remaining in flooded control compared to 12.79 mg kg⁻¹ in dry control soils. Compared to the corresponding unplanted control, maize growth significantly increased, but rice growth slightly decreased the dissipation of lindane. Our study suggests that opposite impacts would lead to the self-purification of polluted soils during the growth of xerophytic maize and hygrocolous rice. This was attributed to the contrasting belowground micro-ecological processes regarding protection of root tissues and thereby assembly of rhizosphere microbiomes shaped by the xerophytic and hygrocolous crops under different water managements, in response to lindane pollution.
Показать больше [+] Меньше [-]Heterogeneous reaction of ozone with syringic acid: Uptake of O3 and changes in the composition and optical property of syringic acid Полный текст
2020
Zhang, Tingting | Yang, Wangjin | Han, Chŏng | Yang, He | Xue, Xiangxin
Syringic acid, which is a typical methoxyphenol emitted from wood combustion, can provide heterogeneous reaction sites for gaseous active components, influencing the concentrations of trace gases and the compositions of syringic acid. The heterogeneous uptake of O₃ on syringic acid was investigated using a flow tube reactor under ambient pressure. The initial uptake coefficient (γᵢ) and the steady-state uptake coefficient (γₛₛ) of O₃ linearly increased with syringic acid mass (0–0.16 μg cm⁻²) and temperature (278–328 K), while they decreased with increasing the O₃ concentration and the O₂ content. The γᵢ was independent of relative humidity (20%–70%), whereas γₛₛ decreased with relative humidity (7%–70%). The compositional changes of syringic acid by the ozonization were analyzed by the Fourier transform infrared spectrometer (FT-IR) and the gas chromatography-mass spectrometry (GC-MS), confirming the generation of 2,6-dimethoxy-1,4-benzoquinone. In addition, compared to that of fresh syringic acid, the mass absorption efficiency of syringic acid aged by O₃ exhibited an increase in the range of 290–320 nm.
Показать больше [+] Меньше [-]