Уточнить поиск
Результаты 451-460 из 795
Submerged Membrane System with Biofilter as a Treatment to Rainwater Полный текст
2009
Areerachakul, N | Kitiphatmontree, M | Kandasamy, J | Kus, B | Duangduen, C | Pivsa-Art, S | Vigneswaran, S
Rainwater has been used as drinking water in Thailand for centuries especially in the rural parts and is accepted as an important water resource. From past to present, the quality of rainwater has changed with the landuse of the landscape, and its water quality is influenced by a diverse range of conditions such as the management of pollutant sources, the catchment condition, wind and meteorological conditions, and the location of rainwater collection points. In this study, the quality of rainwater collected off roofs at several locations was examined. Granular activated carbon (GAC) filtration was used as a pretreatment to microfiltration (MF) to remove the dissolved organic matter (DOC). After an initial adsorption period, the biofilm that formed on the GAC (biofilter) was found to remove DOC by up to 40%, 35%, and 15% for bed filter depths of 15, 10, and 5 cm, respectively. Biofilters also removed nitrate and phosphate by more than 80% and 35%. The hollow fiber membrane microfiltration with pore size of 0.1 μm was used to treat the effluent from biofiltration to remove the microorganisms/pathogens in the rainwater. Although there was no significant additional removal of DOC by MF, the biofilter removed all microorganisms. The use of biofilters as pretreatment to MF/UF could remove a higher amount of DOC, remove microorganisms, increase the membrane treatment efficiency, and reduce membrane fouling.
Показать больше [+] Меньше [-]Determination of BTEX by GC-MS in Air of Offset Printing Plants: Comparison between Conventional and Ecological Inks Полный текст
2009
Godoi, Ana F. L | Sawada, Eliza Y | de Marchi, Mary Rosa R | Van Grieken, René | Godoi, Ricardo H. M
The use of inks containing organic solvents by the offset printing process implies in the release of volatile organic compounds to the work environment. Many of these compounds such as benzene, toluene, ethylbenzene, and the xylene isomers (well known by the acronym BTEX) are extremely toxic. In this study, the BTEX concentrations were determined in two different printing plants that use distinct types of inks: the conventional and the so-called ecological, which is manufactured based on vegetal oil. Concentration ranges were 43-84, 15-3,480, 2-133, 5-459, and 2-236 μg m⁻³ for benzene, toluene, ethylbenzene, m + p-xylene, and o-xylene, respectively, for the conventional printing plant. At the ecological printing plant, concentration ranges were below limit of detection (<LD)-31, <LD-618, <LD-1,690, <LD-10,500, <LD-3,360 μg m⁻³ for benzene, toluene, ethylbenzene, m + p-xylene, and o-xylene, respectively. BTEX concentrations are lower at the ecological printing environment than in the conventional, where mineral oil-based inks are used. However, the worker who cleans the printing matrices is exposed to high concentrations of ethylbenzene and xylenes, due probably to the cleaning product's composition (containing high amounts of BTEX). Although the BTEX concentrations found in both printing work environments were below the limits considered by the Brazilian Law for Activities and Unhealthy Operations (NR-15), the exposure to such vapors characterizes risk to the workers' health for some of the evaluated samples, mainly the personal ones.
Показать больше [+] Меньше [-]Adsorption of Geosmin and MIB on Activated Carbon Fibers-Single and Binary Solute System Полный текст
2009
Srinivasan, Rangesh | Sorial, George A
The adsorption of two taste- and odor-causing compounds, namely MIB (2-methyl isoborneol—C₁₁H₂₀O) and geosmin (C₁₂H₂₂O) on activated carbon was investigated in this study. The impact of adsorbent pore size distribution on adsorption of MIB and geosmin was evaluated through single solute and multicomponent adsorption of these compounds on three types of activated carbon fibers (ACFs) and one granular activated carbon (GAC). The ACFs (ACC-15, ACC-20, and ACC-25) with different degrees of activation had narrow pore size distributions and specific critical pore diameters whereas the GAC (F-400) had a wider pore size distribution and lesser microporosity. The effect of the presence of natural organic matter (NOM) on MIB and geosmin adsorption was also studied for both the single solute and binary systems. The Myers equation was used to evaluate the single solute isotherms as it converges to Henry's law at low coverage and also serves as an input for predicting multicomponent adsorption. The single solute adsorption isotherms fit the Myers equation well and pore size distribution significantly influenced adsorption on the ACFs and GAC. The ideal adsorbed solute theory (IAST), which is a well-established thermodynamic model for multicomponent adsorption, was used to predict the binary adsorption of MIB and geosmin. The IAST predicted well the binary adsorption on the ACFs and GAC. Binary adsorption isotherms were also conducted in the presence of oxygen (oxic) and absence of oxygen (anoxic). There were no significant differences in the binary isotherm between the oxic and anoxic conditions, indicating that adsorption was purely through physical adsorption and no oligomerization was taking place. Binary adsorptions for the four adsorbents were also conducted in the presence of humic acid to determine the effect of NOM and to compare with IAST predictions. The presence of NOM interestingly resulted in deviation from IAST behavior in case of two adsorbents, ACC-15 and F-400.
Показать больше [+] Меньше [-]Contribution of Oil Industry Activities to Environmental Loads of Heavy Metals in the Tabasco Lowlands, Mexico Полный текст
2009
Fiedler, S. | Siebe, C. | Herre, A. | Roṭh, B. | Cram, S. | Stahr, K.
In Tabasco the petroleum industry pollutes soil recurrently by oil spills. We analysed Pb, V, Ni and Cr concentrations in water samples, and total metal contents and metal fractions in soil samples of contaminated and non-contaminated soils and in sediments. Besides, we determined Eh, pH, DOC and major ions in water and Eh, pH, Corg in soils and sediments. Sediments contained considerably larger heavy metal (HM) concentrations than soils. Local background concentrations of V, Ni and Cr in soils are larger than global means and oil spillages have not added these metals in quantities that exceed the natural variation. Spillage of formation water increases Pb concentrations in soils, particularly in mobile fractions. The contribution of the oil industry to HM loads is diluted by large fluvial water and sediment discharges and difficult to assess by comparison of total metal contents. Therefore, easily mobile metal fractions are much better indicators.
Показать больше [+] Меньше [-]Quantitative Comparison of Heavy Metals and As Accumulation in Agricultural and Forest Soils near Bowling Green, Ohio Полный текст
2009
Neupane, Ghanashyam | Roberts, Sheila J.
Soil samples from agricultural and adjacent forest soils in Northwest Ohio were collected and analyzed for As, Cr, Cu, Ni, Pb, and Zn. pH, Eh, electrical conductivity, and moisture content were also measured. Selected samples were also evaluated for grain size and X-rayed to identify clay minerals. In this region, soils contain a large proportion of fines (~32% clay and ~37% silt) with illite, dickite, and chlorite as the main clay minerals. Surface soils in the arable land are slightly acidic (pH ~5.6) while forest soils are near-neutral to slightly basic. All soils become more basic with depth. Soil Eh and electrical conductivity range from 300 to 450 mV and 100 to 375 μS, respectively. In the soil profiles, between 0 and 50 cm depth, As increases from 4.6 to 11 mg/kg, Cr increases from19 to 23 mg/kg and Ni increases 21 to 29 mg/kg. In contrast, Cu decreases from 23 to 17 mg/kg and Pb decreases from17 to 10 mg/kg. Surface enrichment of Cu and Pb can be the result of aerosol deposition, while the downward increase in As, Cr and Ni is related to pedogenic variation. The average concentration of Zn in the samples is 64 mg/kg and does not change with land-use or depth. With the exception of As, the concentration of metals in the agricultural soil is not significantly different from the concentration in forest soil. The concentration of As in the near-surface arable soil (5.6 mg/kg) is significantly different from the concentration of As in the near-surface forest soil (4.3 mg/kg). In both cases, deeper soils have similar As contents. The relative enrichment of As in the surface arable soil could indicate input from herbicides or pesticides. The upward increase in electrical conductivity is interpreted to show that the exchangeable fraction of each metal is higher in the surface soils. However, the near neutral pH and organic, clay-rich soils may limit the mobility. The concentration of these heavy metals and As in the soils are much lower than the limits set by the United States Environmental Protection Agency.
Показать больше [+] Меньше [-]Influence of Common Reed (Phragmites australis) on CH₄ Production and Transport in Wetlands: Results from Single-Plant Laboratory Experiments Полный текст
2009
Duan, Xiaonan | Wang, Xiaoke | Ouyang, Z (Zhiyun)
Laboratory culture experiments were conducted with common reed (Phragmites australis) to elucidate the role of root exudates on CH₄ production in wetland soils as well as the importance of different plant organs as routes of CH₄ to the atmosphere. In the 50 d experiment period, root exudates ranged from 0.03 to 1.53 μmolg⁻¹d⁻¹, which increased with reed growth. CH₄ production rate of soil was stimulated as root exudates collected was added. CH₄ transport capacity rate also increased with plant growth and influenced by light intensity. Root tips were the most important part of controlling diffusion of CH₄ into reed shoots, and leave transport accounted for 45.34% of total emissions into the atmosphere.
Показать больше [+] Меньше [-]Effect of Enhanced-Solubilization Agents on Dissolution and Mass Flux from Uniformly Distributed Immiscible Liquid Trichloroethene (TCE) in Homogeneous Porous Media Полный текст
2009
Tick, Geoffrey R. | Rincon, Erika A.
The use of enhanced-flushing technologies has emerged as a promising technique for the remediation of sites contaminated with immiscible liquids. An important aspect for the effective remediation of these sites depends on the physical heterogeneity of the subsurface and the related distribution of immiscible liquid present within porous media. Recent interest has developed in using mass flux-based approaches to evaluate remediation success and performance for immiscible liquid-contaminated sites. The unique focus of these experiments was to evaluate trichloroethene (TCE) mass flux behavior and mass removal effectiveness for various solubilization agents when the distribution of immiscible liquid is uniform. In order to accurately compare the performance of each enhanced-solubilization agent, the distribution of immiscible liquid must be consistent and uniform. Previous dissolution experiments have typically relied upon injecting immiscible liquid into the porous media which can result in nonuniform immiscible liquid distribution causing nonideal dissolution and mass flux behavior (i.e., immiscible liquid fingering and bypass flow). Homogeneous 20/30 quartz sand was thoroughly mixed with a predetermined amount of immiscible liquid TCE and packed into columns to ensure that uniform distributions of residually saturated TCE (S N = 8-11%) were created. These columns were then flushed with a specific enhanced-solubilization flushing agent to initiate dissolution. Of the four enhanced-solubilization used, the lower solubilization power flushing agents (i.e., cyclodextrins) resulted in more ideal TCE mass flux behavior in which mass flux is maximized and maintained during the majority of the flushing experiment. A strong positive correlation (R ² = 0.92) exists between enhancement factor and mass flux ideality which may suggest that these systems were in fact uniformly distributed with immiscible liquid. In order to appropriately evaluate and compare the effectiveness of specific solubilization agents, it is important to consider mass flux behavior in conjunction with elution behavior and mass removal efficiency.
Показать больше [+] Меньше [-]Trace Metal Availability in Soils Amended with Metal-Fixing Inorganic Materials Полный текст
2009
Madrid, F. | Florido, M. C. | Madrid, L.
Immobilization of metals by two materials (zeolite, AZ, and a synthetic, carbonate-rich material, “slovakite”, SL) was tested in a pot experiment with two soils from urban areas of Sevilla and two soils affected by a mine spill. Barley (Hordeum vulgare L. Hispanic) was grown in the pots, and metal contents were measured after 31 days in shoots and roots. Available metal was estimated by extraction with CaCl₂ (readily soluble), ethylenediaminetetraacetic acid (EDTA; plant available), a mixture of organic acids (soluble by root exudates), and glycine (bioaccessible by ingestion). Neither treatment caused significant differences on plant growth or metal contents of shoots, whereas roots contained more Cu in the SL treatments. Root Zn uptake was reduced in all cases, but reduction of Pb in roots was observed only in AZ treatments of the mine-spill soils. The effects on metal availability were often method-dependent. Decrease of CaCl₂ data were observed only in the mine-spill soils. EDTA-soluble metals were clearly decreased by both materials. Bioaccessible Zn were decreased by either material in several cases (but not in the most heavily polluted soil), whereas Cu or Pb data were less conclusive.
Показать больше [+] Меньше [-]The Effects of Lithology on Water Pollution: Natural Radioactivity and Trace Elements in Water Resources of Eskisehir Region (Turkey) Полный текст
2009
Yuce, Galip | Ugurluoglu, Didem | Dilaver, Alime T. | Eser, Turgay | Sayin, Mesut | Donmez, Mert | Ozcelik, Sakir | Aydin, Funda
The high radioactivity and trace elements in drinking water are common concerns for human health. The aim of this study was to investigate the eligibility of groundwater for drinking purpose in terms of both radioactivity and trace element contents in Eskisehir Region (Turkey). The study area is located in a highly populated residential area where water supply is mostly met from groundwater. The area is about 20,000 km², where igneous, metamorphic, and sedimentary rocks are exposed. The 209 water samples collected from 84 water resources (including thermal waters) were analyzed with respect to major ions, trace elements, and radioactivity (gross alpha and gross beta) during both in wet and dry seasons. Based on the analysis results, trace elements in 49 samples of 84 water resources were over the limits of Code TS 266 1997 (Turkish Drinking Water Standards) and WHO 1993 standards. Particularly, Fe, Mn, Al, As, Ba, Zn, Cr, Cu, and B ion concentrations exceeded the limits. The gross alpha values in 18 locations and gross beta values in three locations also exceeded the limits of aforementioned standards in terms of radioactivity (gross alpha = 0.1 Bq L⁻¹; gross beta = 1 Bq L⁻¹). Furthermore, water radioactivity levels were close to the allowable limits in 33 water resources. The obtained results explicitly indicate that there is a strong relationship between the higher radioactivity-trace element contents and geochemical composition of rocks, which controls the radioactivity and trace element concentrations present in the aquifer.
Показать больше [+] Меньше [-]The Role of Iron Bacteria on Weathering and Attenuation Processes at Acidic Environments Полный текст
2009
García-Balboa, C. | Blázquez, M. L. | González, F. | Muñoz, J. A. | Ballester, A.
The present research reproduces the chemical and microbiological reactions that occur naturally when a metal sulfide is discharged onto a natural soil, with special emphasis on iron cycle. The role of indigenous microbiota from an extremely acidic site on both weathering and attenuation processes related to the iron mobilization has been studied and the iron cycle has been reproduced at laboratory scale. In the first stage, the weathering phase, a residual sulfide mineral was bioleached using a mixed culture of iron-oxidizing bacteria isolated from the own substrate. The acid liquor obtained (pH 2), with a high metal concentration (160 mM in total iron), was filtered and neutralized. Solids obtained from the two sources (from the weathering process and after the neutralization stage) were characterized by X-ray and scanning electron microscope/energy dispersive X-ray spectroscopy, resulting ferric iron precipitates such as jarosites, goethites, and ferrihydrites with different crystalline properties. The contribution of ferric iron-reducing bacteria on the attenuation of high-content iron effluents was also studied. Mixed cultures of ferric iron-reducing bacteria, isolated from those acidic substrates, were active in reducing soluble ferric iron (60 mM in concentration), and a 66% of bioreduction was reached after 15 days. Dissimilatory ferric iron reduction has been achieved with adapted cultures at pH values from 7 to 4.
Показать больше [+] Меньше [-]