Уточнить поиск
Результаты 491-500 из 7,989
Effect of non-optimum ambient temperature on cognitive function of elderly women in Germany
2021
Zhao, Qi | Wigmann, Claudia | Areal, Ashtyn Tracey | Altug, Hicran | Schikowski, Tamara
Non-optimum ambient temperature has been associated with a variety of health outcomes in the elderly population. However, few studies have examined its adverse effects on neurocognitive function. In this study, we explored the temperature-cognition association in elderly women. We investigated 777 elderly women from the German SALIA cohort during the 2007–2010 follow-up. Cognitive function was evaluated using the CERAD-Plus test battery. Modelled data on daily weather conditions were assigned to the residential addresses. The temperature-cognition association over lag 0–10 days was estimated using multivariable regression with distributed lag non-linear model. The daily mean temperature ranged between −6.7 and 26.0 °C during the study period for the 777 participants. We observed an inverse U-shaped association in elderly women, with the optimum temperature (15.3 °C) located at the 68th percentile of the temperature range. The average z-score of global cognitive function declined by −0.31 (95%CI: 0.73, 0.11) for extreme cold (the 2.5th percentile of temperature range) and −0.92 (95%CI: 1.50, −0.33) for extreme heat (the 97.5th percentile of temperature range), in comparison to the optimum temperature. Episodic memory was more sensitive to heat exposure, while semantic memory and executive function were the two cognitive domains sensitive to cold exposure. Individuals living in an urban area and those with a low educational level were particularly sensitive to extreme heat. In summary, non-optimum temperature was inversely associated with cognitive function in elderly women, with the effect size for heat exposure particularly substantial. The strength of association varied by cognitive domains and individual characteristics.
Показать больше [+] Меньше [-]US EPA: Is there room to open a new window for evaluating potential sub-threshold effects and ecological risks?
2021
Agathokleous, Evgenios | Barceló, Damià | Calabrese, Edward J.
With a rule published on 6 January 2021, the US Environmental Protection Agency (EPA) considers for the first time sub-threshold responses, abandoning the use of default dose-response models. This may affect worldwide scientific research, in terms of research design and methodology, and regulatory actions in China and other countries.
Показать больше [+] Меньше [-]Environmentally relevant concentrations of oxytetracycline and copper increased liver lipid deposition through inducing oxidative stress and mitochondria dysfunction in grass carp Ctenopharyngodon idella
2021
Xu, Yi-Huan | Hogstrand, Christer | Xu, Yi-Chuang | Zhao, Tao | Zheng, Hua | Luo, Zhi
Oxytetracycline (OTC) and Cu are prevalent in aquatic ecosystems and their pollution are issues of serious concern. The present working hypothesis is that the toxicity of Cu and OTC mixture on physiological activity of fish was different from single OTC and Cu alone. The present study indicated that, compared to single OTC or Cu alone, Cu+OTC mixture reduced growth performance and feed utilization of grass carp, escalated the contents of Cu, OTC and TG, increased lipogenesis, induced oxidative stress, damaged the mitochondrial structure and functions and inhibited the lipolysis in the liver tissues and hepatocytes of grass carp. Cu+OTC co-treatment significantly increased the mRNA abundances and protein expression of Nrf2. Moreover, we found that Cu+OTC mixture-induced oxidative stress promoted Nrf2 recruitment to the SREBP-1 promoter and increased SREBP-1-mediated lipogenesis; Nrf2 sited at the crossroads of oxidative stress and lipid metabolism, and mediated the regulation of oxidative stress and lipid metabolism. Our findings clearly indicated that OTC and Cu mixture differed in environmental risks from single antibiotic or metal element itself, and thus posed different toxicological responses to aquatic animals. Moreover, our findings suggested that Nrf2 functioned as an important antioxidant regulator linking oxidative stress to lipogenic metabolism, and thus elucidated a novel regulatory mechanism for lipid metabolism.
Показать больше [+] Меньше [-]Co-occurring microorganisms regulate the succession of cyanobacterial harmful algal blooms
2021
Wang, Kai | Mou, Xiaozhen | Cao, Huansheng | Struewing, Ian | Allen, Joel | Lu, Jingrang
Cyanobacterial harmful algal blooms (CyanoHABs) have been found to transmit from N₂ fixer-dominated to non-N₂ fixer-dominated in many freshwater environments when the supply of N decreases. To elucidate the mechanisms underlying such “counter-intuitive” CyanoHAB species succession, metatranscriptomes (biotic data) and water quality-related variables (abiotic data) were analyzed weekly during a bloom season in Harsha Lake, a multipurpose lake that serves as a drinking water source and recreational ground. Our results showed that CyanoHABs in Harsha Lake started with N₂-fixing Anabaena in June (ANA stage) when N was high, and transitioned to non-N₂-fixing Microcystis- and Planktothrix-dominated in July (MIC-PLA stage) when N became limited (low TN/TP). Meanwhile, the concentrations of cyanotoxins, i.e., microcystins were significantly higher in the MIC-PLA stage. Water quality results revealed that N species (i.e., TN, TN/TP) and water temperature were significantly correlated with cyanobacterial biomass. Expression levels of several C- and N-processing-related cyanobacterial genes were highly predictive of the biomass of their species. More importantly, the biomasses of Microcystis and Planktothrix were also significantly associated with expressions of microbial genes (mostly from heterotrophic bacteria) related to processing organic substrates (alkaline phosphatase, peptidase, carbohydrate-active enzymes) and cyanophage genes. Collectively, our results suggest that besides environmental conditions and inherent traits of specific cyanobacterial species, the development and succession of CyanoHABs are regulated by co-occurring microorganisms. Specifically, the co-occurring microorganisms can alleviate the nutrient limitation of cyanobacteria by remineralizing organic compounds.
Показать больше [+] Меньше [-]Enabling a large-scale assessment of litter along Saudi Arabian red sea shores by combining drones and machine learning
2021
Martin, Cecilia | Zhang, Qiannan | Zhai, Dongjun | Zhang, Xiangliang | Duarte, Carlos M.
Beach litter assessments rely on time inefficient and high human cost protocols, mining the attainment of global beach litter estimates. Here we show the application of an emerging technique, the use of drones for acquisition of high-resolution beach images coupled with machine learning for their automatic processing, aimed at achieving the first national-scale beach litter survey completed by only one operator. The aerial survey had a time efficiency of 570 ± 40 m² min⁻¹ and the machine learning reached a mean (±SE) detection sensitivity of 59 ± 3% with high resolution images. The resulting mean (±SE) litter density on Saudi Arabian shores of the Red Sea is of 0.12 ± 0.02 litter items m⁻², distributed independently of the population density in the area around the sampling station. Instead, accumulation of litter depended on the exposure of the beach to the prevailing wind and litter composition differed between islands and the main shore, where recreational activities are the major source of anthropogenic debris.
Показать больше [+] Меньше [-]Organochlorine compounds pose health risks to the Qinling Giant Panda (Ailuropoda melanoleuca qinlingensis)
2021
Zhao, Yan | Chen, Yiping | Macdonald, David W. | Li, Jun | Ma, Qing-yi
To assess organochlorine compound (OC) contamination, its possible sources, and adverse health impacts on giant pandas, we collected soil, bamboo, and panda fecal samples from the habitat and research center of the Qinling panda (Ailuropoda melanoleuca qinlingensis)—the rarest recognized panda subspecies. The polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) concentrations were comparatively low which suggests that moderate sources of OC pollution currently. OC levels were lower in samples from nature reserve than in those collected from pandas held in captivity, and OC levels within the reserve increased between functional areas in the order: core, buffer and experimental. The distribution patterns, and correlation analyses, combined with congener distributions suggested PCBs and OCPs originated from similar sources, were dispersed by similar processes, being transported through atmosphere and characterized by historical residues. Backward trajectory analyses results, and detected DRINs (aldrin, dieldrin, endrin and isodrin) both suggest long-range atmospheric transport of pollution source. PCBs pose potential cancer risk, and PCB 126 was the most notable toxicant as assessed be the high carcinogenic risk index. We provide data for health risk assessment that can guide the identification of priority congeners, and recommend a long-term monitoring plan. This study proposes an approach to ecotoxicological threats whereby giant pandas may be used as sentinel species for other threatened or endangered mammals. By highlighting the risks of long-distance transmission of pollutants, the study emphasizes the importance of transboundary cooperation to safeguard biodiversity.
Показать больше [+] Меньше [-]Individual effects of trichomes and leaf morphology on PM2.5 dry deposition velocity: A variable-control approach using species from the same family or genus
2021
Zhang, Xuyi | Lyu, Junyao | Zeng, Yuxiao | Sun, Ningxiao | Liu, Chunjiang | Yin, Shan
Urban green infrastructure is closely linked to the alleviation of pollution from atmospheric particulate matter. Although particle deposition has been shown to depend on leaf characteristics, the findings from earlier studies are sometimes ambiguous due to the lack of controlling variables. In this study, we investigated the impact of leaf morphological characteristics on PM₂.₅ dry deposition velocity by employing a control-variable approach. We focused on four indices: trichome density, petiole length, aspect ratio (width-to-length ratio), and fractal deviation. For each index, tree species were chosen from the same family or genus to minimize the influence of other factors and make a group of treatments for an individual index. The dry deposition velocities of PM₂.₅ were determined through application of an indirect method. The results revealed that the presence of leaf trichomes had a positive effect on PM₂.₅ dry deposition velocity, and a higher trichome density also led to a greater particle deposition velocity. Lower leaf aspect ratio, shorter petioles, and higher leaf fractal deviation were associated with greater PM₂.₅ dry deposition velocity. The control-variable approach allows to investigate the correlation between deposition velocity and a certain leaf characteristic independently while minimizing the effects of others. Thus, our study can clarify how a single leaf characteristic affects particle deposition velocity, and expound its potential mechanism more scientifically than the published studies. Our research points out the importance of controlling variables, and also provides ideas for future researches on related factors to be found. Meanwhile the results would help provide insight into design improvements or adaptive management for the alleviation of air pollution.
Показать больше [+] Меньше [-]Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes: Contribution of hydrophobic and π-π interactions
2021
Shin, Jaegwan | Kwak, Jinwoo | Lee, Yong-Gu | Kim, Sangwon | Choi, Minhee | Bae, Sungjun | Lee, Sang-Ho | Park, Yongeun | Chon, Kangmin
This study investigated the competitive adsorption mechanisms of pharmaceuticals (i.e., naproxen, diclofenac, and ibuprofen) toward the pristine and NaOH-activated biochars from spent coffee wastes (SCW) in lake water and wastewater effluent. The kinetic and isotherm studies revealed that the improved physicochemical characteristics and physically homogenized surfaces of the pristine SCW biochar through the chemical activation with NaOH were beneficial to the adsorption of pharmaceuticals (competitive equilibrium adsorption capacity (Qₑ, ₑₓₚ): NaOH-activated SCW biochar (61.25–192.07 μmol/g) > pristine SCW biochar (14.81–20.65 μmol/g)). The adsorptive removal of naproxen (Qₑ, ₑₓₚ = 14.81–18.81 μmol/g), diclofenac (Qₑ, ₑₓₚ = 15.73–20.00 μmol/g), and ibuprofen (Qₑ, ₑₓₚ = 16.20–20.65 μmol/g) for the pristine SCW biochar showed linear correlations with their hydrophobicity (log D at pH 7.0: ibuprofen (1.71) > diclofenac (1.37) > naproxen (0.25)). However, their Qₑ, ₑₓₚ values for the NaOH-activated SCW biochar (naproxen (176.39–192.07 μmol/g) > diclofenac (78.44–98.74 μmol/g) > ibuprofen (61.25–80.02 μmol/g)) were inversely correlated to the order of their log D values. These results suggest that the reinforced aromatic structure of the NaOH-activated SCW biochar facilitated the π-π interaction. The calculated thermodynamic parameters demonstrated that the competitive adsorption of pharmaceuticals on the NaOH-activated SCW biochar compared to pristine SCW biochar occurred more spontaneously over the entire pH (5.0–11.0) and ionic strength (NaCl: 0–0.125 M) ranges. These observations imply that the NaOH-activated SCW biochar might be potentially applicable for the removal of pharmaceuticals in lake water and wastewater effluent.
Показать больше [+] Меньше [-]Effect of soil sulfamethoxazole on strawberry (Fragaria ananassa): Growth, health risks and silicon mitigation
2021
Lv, Yao | Li, Yanyan | Liu, Xiaohui | Xu, Kun
The negative impact of antibiotic pollution on the agricultural system and human health is a hot issue in the world. However, little information is available on the antibiotics toxicity mechanism and the role of silicon (Si) to alleviate the antibiotics toxicity. In this study, strawberry (Fragaria ananassa) showed excitatory response to low-dose SMZ (1 mg L⁻¹), but strawberry root and photosynthetic efficiency were damaged under high level. When SMZ level exceeded 10 mg L⁻¹, H₂0₂, O₂⁻, MDA and relative conductivity increased, while SOD and CAT activities first increased and then decreased. SMZ accumulated more in roots and fruits, but less in stems, and the accumulation increased with the increase of SMZ-dose. Under 1 mg L⁻¹ SMZ, the SMZ accumulation in fruits was 110.54 μg kg⁻¹, which exceeded the maximum residue limit. SMZ can induce the expression of sul1, sul2 and intI1, and intI1 had the highest abundance. Exogenous application of Si alleviated the toxicity of SMZ, which is mainly related to the degradation of SMZ in soil and the reduction of SMZ absorption by strawberry. In addition, Si relieved root damage, promoted the increase of photosynthetic efficiency, and improved the antioxidant system to resist SMZ toxicity.
Показать больше [+] Меньше [-]Sources, distribution and effects of rare earth elements in the marine environment: Current knowledge and research gaps
2021
Piarulli, Stefania | Hansen, Bjørn Henrik | Ciesielski, Tomasz | Zocher, Anna-Lena | Malzahn, Arne | Olsvik, Pål A. | Sonne, Christian | Nordtug, Trond | Jenssen, Bjørn Munro | Booth, Andy M. | Farkas, Júlia
Rare earth elements and yttrium (REY) are critical elements for a wide range of applications and consumer products. Their growing extraction and use can potentially lead to REY and anthropogenic-REY chemical complexes (ACC-REY) being released in the marine environment, causing concern regarding their potential effects on organisms and ecosystems. Here, we critically review the scientific knowledge on REY sources (geogenic and anthropogenic), factors affecting REY distribution and transfer in the marine environment, as well as accumulation in- and effects on marine biota. Further, we aim to draw the attention to research gaps that warrant further scientific attention to assess the potential risk posed by anthropogenic REY release. Geochemical processes affecting REY mobilisation from natural sources and factors affecting their distribution and transfer across marine compartments are well established, featuring a high variability dependent on local conditions. There is, however, a research gap with respect to evaluating the environmental distribution and fate of REY from anthropogenic sources, particularly regarding ACC-REY, which can have a high persistence in seawater. In addition, data on organismal uptake, accumulation, organ distribution and effects are scarce and at best fragmentary. Particularly, the effects of ACC-REY at organismal and community levels are, so far, not sufficiently studied. To assess the potential risks caused by anthropogenic REY release there is an urgent need to i) harmonise data reporting to promote comparability across studies and environmental matrices, ii) conduct research on transport, fate and behaviour of ACC-REY vs geogenic REY iii) deepen the knowledge on bioavailability, accumulation and effects of ACC-REY and REY mixtures at organismal and community level, which is essential for risk assessment of anthropogenic REY in marine ecosystems.
Показать больше [+] Меньше [-]