Уточнить поиск
Результаты 511-520 из 7,214
Updated review on microplastics in water, their occurrence, detection, measurement, environmental pollution, and the need for regulatory standards
2022
Yusuf, Ahmed | Sodiq, Ahmed | Giwa, Adewale | Eke, Joyner | Pikuda, Oluwadamilola | Eniola, Jamiu O. | Ajiwokewu, Bilkis | Sambudi, Nonni Soraya | Bilad, Muhammad Roil
The gravity of the impending threats posed by microplastics (MPs) pollution in the environment cannot be over-emphasized. Several research studies continue to stress how important it is to curb the proliferation of these small plastic particles with different physical and chemical properties, especially in aquatic environments. While several works on how to monitor, detect and remove MPs from the aquatic environment have been published, there is still a lack of explicit regulatory framework for mitigation of MPs globally. A critical review that summarizes recent advances in MPs research and emphasizes the need for regulatory frameworks devoted to MPs is presented in this paper. These frameworks suggested in this paper may be useful for reducing the proliferation of MPs in the environment. Based on all reviewed studies related to MPs research, we discussed the occurrence of MPs by identifying the major types and sources of MPs in water bodies; examined the recent ways of detecting, monitoring, and measuring MPs routinely to minimize projected risks; and proposed recommendations for consensus regulatory actions that will be effective for MPs mitigation.
Показать больше [+] Меньше [-]Soil CO2 and CH4 emissions and their carbon isotopic signatures linked to saturated and drained states of the Three Gorges Reservoir of China
2022
Zhang, Dandan | Li, Jinsheng | Wu, Junjun | Cheng, Xiaoli
Human activities such as dams disturb the structure and function of wetlands, triggering large soil CO₂ and CH₄ emissions. However, controls over field CO₂ and CH₄ emissions and their carbon isotopic signatures in reservoir wetlands are not yet fully understood. We investigated in situ CO₂ and CH₄ emissions, the δ¹³C values of CO₂ and CH₄, and associated environments in the saturated and drained states under four elevations (i.e., the water column, <147 m, permanent inundation area without plants; the low, 145–160 m, frequently flooded area with revegetation; the high, 160–175 m, rarely flooded area with revegetation; and the upland area as the control, >175 m, nonflooded area with original plants) in the Three Gorges Reservoir area. The CO₂ emissions was significantly higher in high elevation, and they also significantly differed between the saturated and drained states. In contrast, the CH₄ emissions on average (41.97 μg CH₄ m⁻² h⁻¹) were higher at high elevations than at low elevations (22.73 μg CH₄ m⁻² h⁻¹) during the whole observation period. CH₄ emissions decreased by 90% at low elevations and increased by 153% at high elevations from the saturated to drained states. The δ¹³C of CH₄ was more enriched at high elevations than in the low and upland areas, with a more depleted level under the saturated state than under the drained state. We found that soil CO₂ and CH₄ emissions were closely related to soil substrate quality (e.g., C: N ratio) and enzyme activities, whereas the δ¹³C values of CO₂ and CH₄ were primarily associated with root respiration and methanogenic bacteria, respectively. Specifically, the effects of the saturated and drained states on soil CO₂ and CH₄ emissions were stronger than the effect of reservoir elevation, thereby providing an important basis for assessing carbon neutrality in response to anthropogenic activities.
Показать больше [+] Меньше [-]Relevance of tyre wear particles to the total content of microplastics transported by runoff in a high-imperviousness and intense vehicle traffic urban area
2022
Goehler, Luiza Ostini | Moruzzi, Rodrigo Braga | Tomazini da Conceição, Fabiano | Júnior, Antônio Aparecido Couto | Speranza, Lais Galileu | Busquets, Rosa | Campos, Luiza Cintra
Microplastics (MPs) are an emerging pollutant and a worldwide issue. A wide variety of MPs and tyre wear particles (TWPs) are entering and spreading in the environment. TWPs can reach waterbodies through runoff, where main contributing particulate matter comes from impervious areas. In this paper, TWPs and other types of MPs that were transported with the runoff of a high populated-impervious urban area were characterised. Briefly, MPs were sampled from sediments in a stormwater detention reservoir (SDR) used for flood control of a catchment area of ∼36 km², of which 73% was impervious. The sampled SDR is located in São Paulo, the most populated city in South America. TWPs were the most common type of MPs in this SDR, accounting for 53% of the total MPs; followed by fragments (30%), fibres (9%), films (4%) and pellets (4%). In particular, MPs in the size range 0.1 mm–0.5 mm were mostly TWPs. Such a profile of MPs in the SDR is unlike what is reported in environmental compartments elsewhere. TWPs were found at levels of 2160 units/(kg sediment·km² of impervious area) and 87.8 units/(kg sediment·km street length); MP and TWP loadings are introduced here for the first time. The annual flux of MPs and TWPs were 7.8 × 10¹¹ and 4.1 × 10¹¹ units/(km²·year), respectively, and TWP emissions varied from 43.3 to 205.5 kg/day. SDRs can be sites to intercept MP pollution in urban areas. This study suggests that future research on MP monitoring in urban areas and design should consider both imperviousness and street length as important factors to normalize TWP contribution to urban pollution.
Показать больше [+] Меньше [-]Predicting the global environmental distribution of plastic polymers
2022
Hoseini, Maryam | Bond, Tom
This study represents the first quantitative global prediction of the mass distribution of six widespread polymers, plus plastic fibers and rubber across four environmental compartments and 11 sub-compartments. The approach used probabilistic material flow analysis for 2015, with model input values and transfer coefficients between compartments taken from literature. We estimated that 3.2 ± 1.8 Mt/year of polyethylene, 1.3 ± 0.8 Mt/year of polypropylene, 0.5 ± 0.3 Mt/year of polystyrene, 0.3 ± 0.15 Mt/year of polyvinyl chloride, 1.6 ± 0.9 Mt/year of polyethylene terephthalate and 2.4 ± 1.2 Mt/year of plastic fibers enter the environment. Combining all plastic, including rubber, 4.9 ± 1.3, 4.8 ± 1.9 and 1.8 ± 1.2 Mt/year accumulated in the soil, ocean, and freshwater, respectively. Urban soils and ocean shorelines were predicted as hotspots for plastic accumulation, accounting for 33% and 25% of total plastic, respectively. The floor of freshwater systems and the ocean were predicted as hotspots for high density plastic such as polyethylene terephthalate, polyvinyl chloride and plastic fibers. Furthermore, 59% of environmental rubber was predicted to accumulate in soil. The findings of this study provide baseline data for quantifying plastic transport and accumulation, which can inform future ecotoxicity studies and risk assessments, as well as targeting efforts to mitigate plastic pollution.
Показать больше [+] Меньше [-]Spatial distribution and potential sources of microplastics in the Songhua River flowing through urban centers in Northeast China
2022
Ma, Min | Liu, Shibo | Su, Meng | Wang, Chi | Ying, Zhian | Huo, Mingxin | Lin, Yingzi | Yang, Wu
Microplastics (MPs) have elicited increasing concerns in freshwater systems worldwide. However, little information is available on the MP pollution in the Songhua River, the third largest river in China. And the understanding of the sources and pathways of MPs is limited. In this study, MPs were sampled from river water and wastewater treatment plants in five cities along the Songhua River to investigate the occurrence, spatial distribution, characteristics, and potential sources of MPs. Polyethylene, polypropylene and polystyrene accounted for more than 95% of the total MPs. MP pollution was determined to be spatially heterogeneous. The concentration of MPs in the urban center was always considerably higher than that in the upper reach, and irregular variation was observed from the urban center to the lower reach for each city. Urbanization was one of the primary driving forces of spatial variability. Statistically significant positive correlations (p-value < 0.05) were noted between the average concentration of MPs in river water and population density (p = 0.0023) and number of industrial enterprises above designated size (p = 0.0042) of each city. Line and fiber were the major shapes, and white was the most dominant color. Large (1–5 mm) and small (≤ 1 mm) MP particles accounted for 50% each. Multiple correspondence analysis as a new methodological approach was conducted to elucidate the sources of MPs for the first time. The potential sources of MPs included daily use, fishing, agricultural, and industrial productions. This work provides information about MP contamination for future studies on freshwater systems and new insights into the source apportionment of MPs.
Показать больше [+] Меньше [-]Terrigenous export and ocean currents' diffusion of organophosphorus flame retardants along China's adjacent seas
2022
Zheng, Hongyuan | Cai, Minghong | Yang, Chao | Gao, Yuan | Chen, Zhiyi | Liu, Yanguang
High demands for but strict regulatory measures on Organophosphorus Flame Retardants (OPFRs) have resulted in mainland China transitioning from the region that imports OPRFs to one that exports these substances. Simultaneously, large quantities of terrigenous OPFRs have been exported to adjacent seas by the major river systems, particularly the Yangtze River. This study examined the presence of ten OPFRs in China's adjacent seas. High levels of OPFRs were observed in seas south of mainland China, with Tris (2-chloroethyl) phosphate (TCEP) and Tris (1,3-dichloro-2-propyl) phosphate (TDCPP) dominant. The terrigenous OPFRs were redistributed by the ocean surface currents, with OPFRs tending to accumulate in regions with lower current speed. The producers of OPFRs are mainly distributed along the Haihe, Yellow, and Yangtze river systems. The application of OPFRs to electric vehicle charging stations, charging connectors, and 5G infrastructure in the Chinese mainland will likely drive rapid growth in OPFR related industry in the future. The diffusion trend map of OPFR indicated that the Bohai Sea and the central northern Yellow Sea are at high risk of ecological damage in the spring. The offshore region of the north of the South China Sea tended to aggregate more OPFRs in summer. Regions of the OPFR aggregation effect were at a higher risk of ecological damage.
Показать больше [+] Меньше [-]Role of RNA m6A modification in titanium dioxide nanoparticle-induced acute pulmonary injury: An in vitro and in vivo study
2022
Ruan, Fengkai | Liu, Changqian | Wang, Yi | Cao, Xisen | Tang, Zhen | Xu, Jiaying | Zeng, Jie | Yin, Hanying | Zheng, Naying | Yang, Chunyan | Zuo, Zhenghong | He, Chengyong
RNA N⁶-methyladenosine (m⁶A) modification regulates the cell stress response and homeostasis, but whether titanium dioxide nanoparticle (nTiO₂)-induced acute pulmonary injury is associated with the m⁶A epitranscriptome and the underlying mechanisms remain unclear. Here, the potential association between m⁶A modification and the bioeffects of several engineered nanoparticles (nTiO₂, nAg, nZnO, nFe₂O₃, and nCuO) were verified thorough in vitro experiments. nFe₂O₃, nZnO, and nTiO₂ exposure significantly increased the global m⁶A level in A549 cells. Our study further revealed that nTiO₂ can induce m⁶A-mediated acute pulmonary injury. Mechanistically, nTiO₂ exposure promoted methyltransferase-like 3 (METTL3)-mediated m⁶A signal activation and thus mediated the inflammatory response and IL-8 release through the degeneration of anti-Mullerian hormone (AMH) and Mucin5B (MUC5B) mRNAs in a YTH m⁶A RNA-binding protein 2 (YTHDF2)-dependent manner. Moreover, nTiO₂ exposure stabilized METTL3 protein by the lipid reactive oxygen species (ROS)-activated ERK1/2 pathway. The scavenging of ROS with ferrostatin-1 (Fer-1) alleviates the ERK1/2 activation, m⁶A upregulation, and the inflammatory response caused by nTiO₂ both in vitro and in vivo. In conclusion, our study demonstrates that m⁶A is a potential intervention target for alleviating the adverse effects of nTiO₂-induced acute pulmonary injury in vitro and in vivo, which has far-reaching implications for protecting human health and improving the sustainability of nanotechnology.
Показать больше [+] Меньше [-]An iron-biochar composite from co-pyrolysis of incinerated sewage sludge ash and peanut shell for arsenic removal: Role of silica
2022
Wang, Qiming | Li, Jiang-shan | Poon, C. S. (Chi-sun)
Modification of biochar by low-cost iron sources has gained increasing attention to improve pollutants removal performance and reduce production costs compared to conventional chemical modifications. While such iron sources generally have complex compositions, their effects on properties of the iron-biochar composite are not well investigated. This study produced an iron-biochar (RBC) composite from co-pyrolysis of incinerated sewage sludge ash (ISSA) and peanut shell, and examined the role of silica with widespread existence in ISSA and other low-cost iron sources on properties of the iron-biochar composite relevant to As(III)/As(V) removal. Silica was found to react with iron during the pyrolysis process at 850 °C and formed iron silicon at the expense of producing zero valent iron and Fe₃O₄ which resulted in a poorer removal efficacy for As(III) and As(V) compared to the iron-biochar (FBC) made from pure Fe₂O₃ and peanut shell. Moreover, a high leaching of reactive silica from RBC was observed which affected the formation of corrosion products of ZVI and competed with arsenic for active adsorption sites. Despite this, RBC still exhibited a maximum adsorption capacity of 17.44 and 57.56 mg/g towards As(III) and As(V) respectively at pH 3.0. Overall, this study provides an interesting insight into upcycling ISSA into useful media for sorptive removal of arsenic from aqueous solutions.
Показать больше [+] Меньше [-]Yielding hydroxyl radicals in the Fenton-like reaction induced by manganese (II) oxidation determines Cd mobilization upon soil aeration in paddy soil systems
2022
Wang, Meng | Liu, Yongbing | Shi, Huading | Li, Shanshan | Chen, Shibao
As a redox-sensitive element, manganese (Mn) plays a critical role in Cd mobilization, especially in paddy soil. In an anoxic environment, the precipitation of Mn(II)-hydroxides specifically favors Cd retention, while draining the paddy fields results in substantial remobilization of Cd. However, how the change in Mn redox states during the periodical transit of anoxic to oxic systems affects Cd mobility remains unclear. In this study, we demonstrate that the radical effect generated during the oxidation of Mn(II)-hydroxides exerts a significant effect on the oxidative dissolution of Cd during the aeration of paddy soils. The extractable Cd concentration decreased rapidly during the reduction phases but increased upon oxidation, while Cd availability produced the opposite effect with soil pe + pH and the extractable Mn concentration. Inhibiting the oxidation of Mn(II)-containing phases by microbes suppressed the production of hydroxyl free radicals (•OH) and Cd mobilization in the drainage phase. Analysis of X-ray absorption spectroscopy and sequential extraction demonstrated that the transformation from the Mn phase of Mn(II) to Mn(III/IV) determines Cd solubility. Altogether, the oxidization of Mn(II)-hydroxides was associated with the generation of significant amounts of •OH. The dissolution of Mn(II)- incorporating phases lead to a net release of Cd into soils during soil aeration.
Показать больше [+] Меньше [-]Organophosphate esters in surface waters of Shandong Peninsula in eastern China: Levels, profile, source, spatial distribution, and partitioning
2022
Lian, Maoshan | Lin, Chunye | Xin, Ming | Gu, Xiang | Lü Shuang, | Wang, Baodong | Ouyang, Wei | Liu, Xitao | He, Mengchang
Organophosphate ester (OPE) levels, profiles, sources, spatial distribution, and partitioning were firstly studied in the rivers of the Shandong Peninsula. A total of 53 water samples and 45 sediment samples were collected from the rivers and the sewage treatment plant in the peninsula to quantitate levels of 13 targeted OPEs. Total OPE concentrations ranged from 263 to 6676 ng L⁻¹ in the water, and 39.3–360 ng g⁻¹ in the sediment. TEP, TCPP, and TCEP together contributed more than 90% of total OPE content. TCEP and TCPP concentrations in the Xiaoqing River sediment were increased by approximately two and seven times from 2014 to 2019, respectively. Total OPE concentrations generally increased from upstream regions to the estuaries. The main OPE sources were municipal effluent in the Jiaozhou Bay (JZB) watershed and chemical industrial wastewater in the Laizhou Bay (LZB) watershed. TCPP, TEP, and TCEP were generally approaching equilibrium between sediment and overlying water, while TNBP, TIBP, and TBOEP effectively transferred from the overlying water to the sediment. The riverine OPE flux was 0.66 ton/year to JZB and 3.58 ton/year to the LZB. TCPP and TCEP in municipal effluent, and TEP in chemical industrial wastewater should be regulated to protect Shandong Peninsula waters.
Показать больше [+] Меньше [-]