Уточнить поиск
Результаты 581-590 из 7,351
Phthalates released from microplastics inhibit microbial metabolic activity and induce different effects on intestinal luminal and mucosal microbiota Полный текст
2022
Yan, Zehua | Zhang, Shenghu | Zhao, Yonggang | Yu, Wenyi | Zhao, Yanping | Zhang, Yan
The intestine is not only the main accumulation organ of microplastics (MPs), but also the intestinal environment is very conductive to the release of additives in MPs. However, the kinetics of release process, influence factors, and the related effects on gut microbiota remain largely unknown. In this study, a mucosal-simulator of the human intestinal microbial ecosystem (M-SHIME) was used to investigate the influence of gut microbiota on the release of phthalates (PAEs) from MPs and the effects of MPs on the intestinal luminal microbiota and mucosal microbiota. We found that di-(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), and dimethyl phthalate (DMP) were the dominant PAEs released in the gut. Gut microbiota accelerated the release of PAEs, with the time to reach the maximum release was shortened from 7 days to 2 days. Moreover, MPs induced differential effects on luminal microbiota and mucosal microbiota. Compared with mucosal microbiota, the luminal microbiota was more susceptible to the leaching of PAEs from MPs, as evidenced by more microbiota alterations. MPs also inhibited the metabolic activity of intestinal flora based on the reduced production of short chain fatty acids (SCFA). These effects were mainly contributed by the release of PAEs. Acidaminococcus and Morganella were simultaneously correlated to the release of PAEs and the inhibition of metabolic activity of intestinal microbiota and can be used as indicators for the intestinal exposure of MPs and additives.
Показать больше [+] Меньше [-]Isotope evidence for temporal and spatial variations of anthropogenic sulfate input in the Yihe River during the last decade Полный текст
2022
Duan, Hui-zhen | Zhang, Dong | Zhao, Zhi-qi | Jiang, Hao | Zhang, Cong | Huang, Xing-yu | Ma, Bing-juan | Guo, Qing-jun
Pyrite oxidation and sedimentary sulfate dissolution are the primary components of riverine sulfate (SO₄²⁻) and are predominant in global SO₄²⁻ flux into the ocean. However, the proportions of anthropogenic SO₄²⁻ inputs have been unclear, and their tempo-spatial variations due to human activities have been unknown. Thus, field work was conducted in a spatially heterogeneous human-affected area of the Yihe River Basin (YRB) during a wet year (2010) and drought years (2017/2018). Dual sulfate isotopes (δ³⁴S–SO₄²⁻ and δ¹⁸O–SO₄²⁻) and Bayesian isotope mixing models were used to calculate the variable anthropogenic SO₄²⁻ inputs and elucidate their temporal impacts on riverine SO₄²⁻ flux. The results of the mixing models indicated acid mine drainage (AMD) contributions increased from 56.1% to 83.1% of upstream sulfate and slightly decreased from 46.3% to 44.0% of midstream sulfate in 2010 and 2017/2018, respectively, in the Yihe River Basin. The higher upstream contribution was due to extensive metal-sulfide-bearing mine drainage. Sewage-derived SO₄²⁻ and fertilizer-derived SO₄²⁻ inputs in the lower reaches had dramatically altered SO₄²⁻ concentrations and δ³⁴S–SO₄²⁻ and δ¹⁸O–SO₄²⁻ values. Due to climate change, the water flow discharge decreased by about 70% between 2010 and 2017/2018, but the riverine sulfate flux was reduced by only about 58%. The non-proportional increases in anthropogenic sulfate inputs led to decreases in the flow-weighted average values of δ³⁴S–SO₄²⁻ and δ¹⁸O–SO₄²⁻ from 10.3‰ to 9.9‰ and from 6.1‰ to 4.4‰, respectively. These outcomes confirm that anthropogenic SO₄²⁻ inputs from acid mine drainage (AMD) have increased, but sewage effluents SO₄²⁻ inputs have decreased.
Показать больше [+] Меньше [-]Phase transformation-driven persulfate activation by coupled Fe/N–biochar for bisphenol a degradation: Pyrolysis temperature-dependent catalytic mechanisms and effect of water matrix components Полный текст
2022
Wang, Yujiao | Wang, Li | Cao, Yuqing | Bai, Shanshan | Ma, Fang
Fe–N co-doped biochar is recently an emerging carbocatalyst for persulfate activation in situ chemical oxidation (ISCO). However, the involved catalytic mechanisms remain controversial and distinct effects of coexisting water components are still not very clear. Herein, we reported a novel N-doped biochar-coupled crystallized Fe phases composite (Fe@N-BC₈₀₀) as efficient and low-cost peroxydisulfate (PDS) activators to degrade bisphenol A (BPA), and the underlying influencing mechanism of coexisting inorganic anions (IA) and humic constituent. Due to the formation of graphitized nanosheets with high defects (AI index>0.5, ID/IG = 1.02), Fe@N-BC₈₀₀ exhibited 2.039, 5.536, 8.646, and 23.154-fold higher PDS catalytic activity than that of Fe@N-BC₆₀₀, Fe@N-BC₄₀₀, N-BC, BC. Unlike radical pathway driven by carbonyl group and pyrrolic N of low/mid-temperature Fe@N–BCs. The defective graphitized nanosheets and Fe-Nx acted separately as electron transfer and radical pathway active sites of Fe@N-BC₈₀₀, where π-π sorption assisted with pyrrolic N and pore-filling facilitated BPA degradation. The strong inhibitory effects of PO₄³⁻ and NO₂⁻ were ascribed to competitive adsorption of phosphate (61.11 mg g⁻¹) and nitrate (23.99 mg g⁻¹) on Fe@N-BC₈₀₀ via electrostatic attraction and hydrogen bonding. In contrast, HA competed for the pyrrolic-N site and hindered electron delivery. Moreover, BPA oxidation pathways initiated by secondary free radicals were proposed. The study facilitates a thorough understanding of the intrinsic properties of designed biochar and contributes new insights into the fate of degradation byproducts formed from ISCO treatment of micropollutants.
Показать больше [+] Меньше [-]Facilitated transport of microplastics and nonylphenol in porous media with variations in physicochemical heterogeneity Полный текст
2022
Xu, Lilin | Liang, Yan | Zhang, Rupin | Xu, Baile | Liao, Changjun | Xie, Tian | Wang, Dengjun
Nonylphenol (Noph) has garnered worldwide concern as a typical endocrine disruptor due to its toxicity, estrogenic properties, and widespread contamination. To better elucidate the interaction of Noph with ubiquitously existing microplastics (MPs) and the potential interdependence of their transport behaviors, batch adsorption and column experiments were conducted, paired with mathematical modeling. Compared with sand, MPs and soil colloids show stronger adsorption affinity for Noph due to the formation of hydrogen bonding and the larger numbers of interaction sites that are available on solid surfaces. Limited amount of soil-colloid coating on sand grains significantly influenced transport behaviors and the sensitivity to solution chemistry. These coatings led to a monotonic increase in Noph retention and a nonmonotonic MPs retention in single systems because of the altered physicochemical properties. The mobility of both MPs and Noph was enhanced when they coexisted, resulting from their association, increased electrostatic repulsion, and competition on retention sites. Limited release of MPs and Noph (under reduced ionic strength (IS) and increased pH) indicated strong interactions in irreversible retention. The retention and release of Noph were independent of IS and solution pH. A one-site model with a blocking term and a two-site kinetic model well described the transport of MPs and Noph, respectively. Our findings highlight the essential roles of coexisting MPs and Noph on their transport behaviors, depending on their concentrations, IS, and physicochemical properties of the porous media. The new knowledge from this study refreshes our understanding of the co-transport of MPs and organic contaminants such as Noph in the subsurface.
Показать больше [+] Меньше [-]Impacts of combined exposure to formaldehyde and PM2.5 at ambient concentrations on airway inflammation in mice Полный текст
2022
Lu, Xianxian | Gong, Cunyi | Lv, Ke | Zheng, Lifang | Li, Beibei | Zhao, Yuanteng | Lu, Haonan | Wei, Tingting | Huang, Jiawei | Li, Rui
Asthma is a respiratory disease that can be exacerbated by certain environmental factors. Both formaldehyde (FA) and PM₂.₅, the most common indoor and outdoor air pollutants in mainland China, are closely associated with the onset and development of asthma. To date, however, there is very little report available on whether there is an exacerbating effect of combined exposure to FA and PM₂.₅ at ambient concentrations. In this study, asthmatic mice were exposed to 1 mg/m³ FA, 1 mg/kg PM₂.₅, or a combination of 0.5 mg/m³ FA and 0.5 mg/kg PM₂.₅, respectively. Results demonstrated that both levels of oxidative stress and inflammation were significantly increased, accompanied by an obvious decline in lung function. Further, the initial activation of p38 MAPK and NF-κB that intensified the immune imbalance of asthmatic mice were found to be visibly mitigated following the administration of SB203580, a p38 MAPK inhibitor. Noteworthily, it was found that combined exposure to the two at ambient concentrations could significantly worsen asthma than exposure to each of the two alone at twice the ambient concentration. This suggests that combined exposure to formaldehyde and PM₂.₅ at ambient concentrations may have a synergistic effect, thus causing more severe damage in asthmatic mice. In general, this work has revealed that the combined exposure to FA and PM₂.₅ at ambient concentrations can synergistically aggravate asthma via the p38 MAPK pathway in mice.
Показать больше [+] Меньше [-]Diversity and distribution of antibiotic resistance genes associated with road sediments transported in urban stormwater runoff Полный текст
2022
Zuo, XiaoJun | Suo, PengCheng | Li, Yang | Xu, Qiangqiang
Recently, increasing attention has been paid to antibiotic resistance genes (ARGs) in urban stormwater runoff. However, there were little data on the diversity and distribution of ARGs associated with road sediments transported in runoff. The investigation of ARGs diversity showed that sulfonamide resistance genes (sul2 and sul3) occupied 61.7%–82.3% of total ARGs in runoff. The analysis of ARGs distribution in particulate matter (PM) implied that both tetQ and trbC existed mainly in PM with size of 150–300 μm, but other ARGs and mobile genetic elements (MGEs) were dominant in PM with size <75 μm. The discussion of potential hosts indicated that target genes (ermF, blaOXA1/blaOXA30, ermC, qnrA, sul2, tnpA-01, intI2, tetW, intI1, sul3, trbC) had the strongest subordinate relationship with Proteobacteria at phylum level and Enterobacter at genus level. The effect evaluation of ARGs distribution suggested that 13 kinds of ARGs were positively correlated with Pr/PS and Zeta potential, resulting in the more ARGs in PM with smaller size (<75 μm).
Показать больше [+] Меньше [-]Greenspace and health outcomes in children and adolescents: A systematic review Полный текст
2022
Ye, Tingting | Yu, Pei | Wen, Bo | Yang, Zhengyu | Huang, Wenzhong | Guo, Yuming | Abramson, Michael J. | Li, Shanshan
An increasing body of evidence has linked greenspace and various health outcomes in children and adolescents, but the conclusions were inconsistent. For this review, we comprehensively summarized the measurement methods of greenspace, resultant health outcomes, and potential mechanisms from epidemiological studies in children and adolescents (aged ≤19 years). We searched for studies published and indexed in MEDLINE and EMBASE (via Ovid) up to April 11, 2022. There were a total of 9,291 studies identified with 140 articles from 28 countries finally assessed and included in this systematic review. Over 70% of the studies were conducted in highly urbanised countries/regions, but very limited research has been done in low-and middle-income countries and none in Africa. Measures of greenspace varied. Various health outcomes were reported, including protective effects of greenspace exposure on aspects of obesity/overweight, myopia, lung health, circulatory health, cognitive function, and general health in children and adolescents. The associations between greenspace exposure and other health outcomes were inconsistent, especially for respiratory health studies. We pooled odds ratios (OR) using random-effects meta-analysis for health outcomes of asthma (OR = 0.94, 95%CI: 0.84 to 1.06), allergic rhinitis (OR = 0.95; 95% CI: 0.73 to 1.25), and obesity/overweight (OR = 0.91, 95%CI: 0.84 to 0.98) with per 0.1 unit increase in normalized difference in vegetation index (NDVI). These associations have important implications for the assessment and management of urban environment and health in children and adolescents.
Показать больше [+] Меньше [-]Biochemical and cellular responses of the freshwater mussel, Hyriopsis bialata, to the herbicide atrazine Полный текст
2022
Nuchan, Pattanan | Kovitvadhi, Uthaiwan | Sangsawang, Akkarasiri | Kovitvadhi, Satit | Klaimala, Pakasinee | Srakaew, Nopparat
The present study aimed to evaluate biochemical and cellular responses of the freshwater mussel, Hyriopsis bialata, to the herbicide atrazine (ATZ). The mussels were exposed to environmentally-relevant concentrations of ATZ (0, 0.02 and 0.2 mg/L) and a high concentration (2 mg/L) for 0, 7, 14, 21 and 28 days. Tissues comprising male and female gonads, digestive glands and gills were collected and assessed for ethoxyresorufin-O-deethylase (EROD) activity, glutathione S-transferase (GST) activity, multixenobiotic resistance mechanism (MXR), histopathological responses, DNA fragmentation and bioaccumulation of ATZ and its transformation derivatives, desethylatrazine (DEA) and desisopropylatrazine (DIA). Additionally, circulating estradiol levels were determined. It appeared that ATZ did not cause significant changes in activities of EROD, GST and MXR. There were no apparent ATZ-mediated histopathological effects in the tissues, with the exception of the male gonads exhibiting aberrant aggregation of germ cells in the ATZ-treated mussels. Contrarily, ATZ caused significant DNA fragmentation in all tissues of the treated animals in dose- and time-dependent manners. In general, the circulating estradiol levels were higher in the females than in the males. However, ATZ-treated animals did not show significant alterations in the hormonal levels, as compared with those of the untreated animals. Herein, we showed for the first time differentially spatiotemporal distribution patterns of bioaccumulation of ATZ, DEA and DIA, with ATZ and DEA detectable in the gonads of both sexes, DEA and DIA in the digestive glands and only DEA in the gills. The differential distribution patterns of bioaccumulation of ATZ and its derivatives among the tissues point to different pathways and tissue capacity in transforming ATZ into its transformation products. Taken together, the freshwater mussel H. bialata was resistant to ATZ likely due to their effective detoxification. However, using DNA damage as a potential biomarker, H. bialata is a promising candidate for biomonitoring aquatic toxicity.
Показать больше [+] Меньше [-]Ecological responses of coral reef to polyethylene microplastics in community structure and extracellular polymeric substances Полный текст
2022
Hung, Chang-Mao | Chen, Chiu-Wen | Huang, Jinbao | Hsieh, Shu-Ling | Dong, Cheng-Di
The relationships and interactions between extracellular polymeric substances (EPS) and microplastics (MPs) in coral reef ecosystems were symmetrically investigated. The current study aims to investigate the responses of scleractinian coral (Goniopora columna) to exposure of model MPs, exemplified by polyethylene (PE), in the size range of 40–48 μm as affected by MPs concentration of MP in the range between 0 and 300 mg L⁻¹ for 14 days. The structure of EPS-associated microbial community was studied using a series of techniques including high-throughput sequencing of 16 S rRNA, transmission electron microscopy (TEM), hydrodynamic diameter, surface charge (via zeta potential), X-ray diffraction (XRD), attenuated total reflectance‒Fourier transform infrared (ATR‒FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and fluorescence excitation–emission matrix (FEEM) spectroscopy. Microbial interactions between PE-MPs and coral caused aggregation and formation of EPS matrix, which resulted in increase and decrease in the relative abundance of Donghicola (Proteobacteria phylum) and Marivita (Proteobacteria phylum) in PE-MP-associated EPS, respectively. Particle size, electrostatic interactions, and complexation with the functional groups of the EPS-based matrix affected the humification index. FEEM spectroscopy analyses suggested the presence of humic- and fulvic-like fluorophores in EPS and dissolved organic matter (DOM) in PE-MP-derived DOM. The findings provided insights into the potential environmental implications of coral-based EPS and co-existing microbial assemblages due to EPS-PE-MP-microbiome interactions throughout the dynamic PE-MP exposure process.
Показать больше [+] Меньше [-]Radiocaesium accumulation and fluctuating asymmetry in the Japanese mitten crab, Eriocheir japonica, along a gradient of radionuclide contamination at Fukushima Полный текст
2022
Fuller, Neil | Smith, Jim T. | Takase, Tsugiko | Ford, Alex T. | Wada, Toshihiro
The 2011 Tohoku earthquake-tsunami and the subsequent nuclear accident at the Fukushima Dai-ichi Nuclear Power Station (FDNPS) led to large-scale radionuclide contamination of the marine and freshwater environment. Monitoring studies of marine food products in the Fukushima region have generally demonstrated a declining trend in radiocaesium concentrations. However, the accumulation and elimination of radiocaesium and potential biological effects remain poorly understood for freshwater biota inhabiting highly contaminated areas at Fukushima. Consequently, the present study aimed to assess radiocaesium accumulation and developmental effects on the commercially important catadromous Japanese mitten crab, Eriocheir japonica. E. japonica were collected from four sites along a gradient of radionuclide contamination 4–44 km in distance from the FDNPS in 2017. To determine potential developmental effects, fluctuating asymmetry (FA) was used as a measure of developmental stability. Combined ¹³⁴Cs and ¹³⁷Cs values for whole E. japonica from highly contaminated sites 4 and 16 km in distance from the FDNPS were 3040 ± 521 and 2250 ± 908 Bq kg⁻¹ wet weight respectively, 30 and 22 times greater than the Japanese standard limit of 100 Bq kg⁻¹. Estimated total dose rates based on radiocaesium concentrations in whole crabs and sediment ranged from 0.016 to 37.7 μGy h⁻¹. No significant relationship between radiocaesium accumulation and FA was recorded, suggesting that chronic radiation exposure at Fukushima is not inducing developmental effects in E. japonica as measured using fluctuating asymmetry. Furthermore, estimated dose rates were below proposed regulatory limits where significant deleterious effects are expected. The present study will aid in the understanding of the long-term consequences of radiation exposure for non-human biota and the management of radioactively contaminated environments.
Показать больше [+] Меньше [-]