Уточнить поиск
Результаты 591-600 из 4,013
Changes in leaf area, nitrogen content and canopy photosynthesis in soybean exposed to an ozone concentration gradient Полный текст
2016
Oikawa, Shimpei | Ainsworth, Elizabeth A.
Influences of ozone (O3) on light-saturated rates of photosynthesis in crop leaves have been well documented. To increase our understanding of O3 effects on individual- or stand level productivity, a mechanistic understanding of factors determining canopy photosynthesis is necessary. We used a canopy model to scale photosynthesis from leaf to canopy, and analyzed the importance of canopy structural and leaf ecophysiological characteristics in determining canopy photosynthesis in soybean stands exposed to 9 concentrations of [O3] (37–116 ppb; 9-h mean). Light intensity and N content peaked in upper canopy layers, and sharply decreased through the lower canopy. Plant leaf area decreased with increasing [O3] allowing for greater light intensity to reach lower canopy levels. At the leaf level, light-saturated photosynthesis decreased and dark respiration increased with increasing [O3]. These data were used to calculate daily net canopy photosynthesis (Pc). Pc decreased with increasing [O3] with an average decrease of 10% for an increase in [O3] of 10 ppb, and which was similar to changes in above-ground dry mass production of the stands. Absolute daily net photosynthesis of lower layers was very low and thus the decrease in photosynthesis in the lower canopy caused by elevated [O3] had only minor significance for total canopy photosynthesis. Sensitivity analyses revealed that the decrease in Pc was associated with changes in leaf ecophysiology but not with decrease in leaf area. The soybean stands were very crowded, the leaves were highly mutually shaded, and sufficient light for positive carbon balance did not penetrate to lower canopy leaves, even under elevated [O3].
Показать больше [+] Меньше [-]The effect of Cu2+ chelation on the direct photolysis of oxytetracycline: A study assisted by spectroscopy analysis and DFT calculation Полный текст
2016
Jin, Xin | Qiu, Shanshan | Wu, Ke | Jia, Mingyun | Wang, Fang | Gu, Chenggang | Zhang, Aiqian | Jiang, Xin
The extensive usage of OTC and Cu2+ in livestock and poultry industry caused high residues in natural environment. Co-contamination of OTC and Cu2+ was a considerable environmental problem in surface waters. In this study, Cu2+ mediated direct photolysis of OTC was studied. Cu2+ chelating with OTC was found to greatly inhibit OTC photodegradation. To reveal the chelation mechanism of OTC-Cu complexes, multiple methods including UV–Vis absorption spectra, Infrared (IR) spectra, mass spectroscopy, and density functional theoretical (DFT) modeling were performed. Four OTC-Cu complexes were proposed. Cu2+ preferably bond to O11O12 site with the binding constants logK = 8.19 and 7.86 for CuHL+ and CuL±, respectively. The second chelating site was suggested to be O2O3 with the binding constants of logK = 4.41 and 4.62 for Cu2HL3+ and Cu2L2+, respectively. The suppressed quantum yield of OTC by Cu2+ chelation was accused for their intra-/inter-molecular electron transfer, by which the energy in activated states was distributed. The occurrence of electron transfer between BCD ring and A ring also from BCD ring to Cu was evidenced by the TD-DFT result only for the OTC-Cu complexes. Besides, the cyclic voltammetry measurement also suggested one OTC-Cu(II)/OTC-Cu(I) redox couple. These results suggested that the persistence of OTC in environmental surface waters will probably be underestimated for neglecting the chelating effect of Cu2+. The photolysis quantum yield of OTC-Cu complexes, as well as the specific molar absorption constants, the equilibrium binding constants of Cu2+ with OTC could contribute to more accurate kinetic models of OTC.
Показать больше [+] Меньше [-]An integrated omic analysis of hepatic alteration in medaka fish chronically exposed to cyanotoxins with possible mechanisms of reproductive toxicity Полный текст
2016
Qiao, Qin | Le Manach, Séverine | Huet, Hélène | Duvernois-Berthet, Evelyne | Chaouch, Soraya | Duval, Charlotte | Sotton, Benoit | Ponger, Loïc | Marie, Arul | Mathéron, Lucrèce | Lennon, Sarah | Bolbach, Gérard | Djediat, Chakib | Bernard, Cécile | Edery, Marc | Marie, Benjamin
Cyanobacterial blooms threaten human health as well as the population of other living organisms in the aquatic environment, particularly due to the production of natural toxic components, the cyanotoxin. So far, the most studied cyanotoxins are microcystins (MCs). In this study, the hepatic alterations at histological, proteome and transcriptome levels were evaluated in female and male medaka fish chronically exposed to 1 and 5 μg L−1 microcystin-LR (MC-LR) and to the extract of MC-producing Microcystis aeruginosa PCC 7820 (5 μg L−1 of equivalent MC-LR) by balneation for 28 days, aiming at enhancing our understanding of the potential reproductive toxicity of cyanotoxins in aquatic vertebrate models. Indeed, both MC and Microcystis extract adversely affect reproductive parameters including fecundity and egg hatchability. The liver of toxin treated female fish present glycogen storage loss and cellular damages. The quantitative proteomics analysis revealed that the quantities of 225 hepatic proteins are dysregulated. In particular, a notable decrease in protein quantities of vitellogenin and choriogenin was observed, which could explain the decrease in reproductive output. Liver transcriptome analysis through Illumina RNA-seq reveals that over 100–400 genes are differentially expressed under 5 μg L−1 MC-LR and Microcystis extract treatments, respectively. Ingenuity pathway analysis of the omic data attests that various metabolic pathways, such as energy production, protein biosynthesis and lipid metabolism, are disturbed by both MC-LR and the Microcystis extract, which could provoke the observed reproductive impairment. The transcriptomics analysis also constitutes the first report of the impairment of circadian rhythm-related gene induced by MCs. This study contributes to a better understanding of the potential consequences of chronic exposure of fish to environmental concentrations of cyanotoxins, suggesting that Microcystis extract could impact a wider range of biological pathways, compared with pure MC-LR, and even 1 μg L−1 MC-LR potentially induces a health risk for aquatic organisms.
Показать больше [+] Меньше [-]Ambient concentration and dry deposition of major inorganic nitrogen species at two urban sites in Sichuan Basin, China Полный текст
2016
Wang, Huanbo | Yang, Fumo | Shi, Guangming | Tian, Mi | Zhang, Leiming | Zhang, Liuyi | Fu, Chuan
To assess pollution levels of major inorganic nitrogen species and their atmospheric deposition input to sensitive ecosystems in Sichuan Basin, southwest China, ambient concentrations of oxidized (NOy ∼ NO2, HNO3, NO3−) and reduced (NHx = NH3, NH4+) nitrogen species were collected at two urban sites during four one-month periods, each in a different season from July 2014 to April 2015. Estimated annual mean concentration of NOy was 20.3 and 13.5 μg N m−3 in Chengdu and Wanzhou, respectively, and NHx was 16.9 and 13.6 μg N m−3, respectively. Back trajectory cluster analysis indicated that high levels of NOy and NHx in Chengdu were mainly caused by local emissions while those in Wanzhou were caused by both the local emissions and long-range transport of pollutants. On annual basis, NO2 contributed the most to NOy, followed by NO3− and HNO3, accounting for 87.5%, 10.5% and 2.0%, respectively, of NOy in Chengdu, and 91.4%, 6.9% and 1.7%, respectively, in Wanzhou. NH3 was the predominant contributor to NHx, contributing 65.6% and 72.2% in Chengdu and Wanzhou, respectively. Dry deposition fluxes were estimated using the inferential method with measured ambient concentrations and modelled dry deposition velocities. The total inorganic nitrogen dry deposition flux was estimated to be 21.4 and 8.5 kg N ha−1 yr−1, with 44.3% and 41.4% from NOy in Chengdu and Wanzhou, respectively. NO2 and NH3 each contributed about 80% of NOy and NHx dry deposition, respectively. Wet deposition was only collected in Wanzhou, where the annual wet deposition of NO3− and NH4+ was 4.5 and 15.7 kg N ha−1 yr−1, respectively. The total wet plus dry deposition was 28.7 kg N ha−1 yr−1 in Wanzhou with 72.2% from reduced nitrogen. Therefore, controlling NH3 emissions from agricultural, traffic, waste containers and sewage system sources would be effective to reduce the total nitrogen deposition in the Sichuan Basin area.
Показать больше [+] Меньше [-]Sensitivity of source apportionment results to mobile source profiles Полный текст
2016
Cai, Tianqi | Schauer, James J. | Huang, Wei | Fang, Dongqing | Shang, Jing | Wang, Yuqin | Zhang, Yuanxun
The sensitivity of a source apportionment model to mobile source profiles was examined to determine the impact of using non-local mobile source profiles in chemical mass balance (CMB) models. We examined the impact of USA and Chinese mobile source profiles on source apportionment results in St. Louis, Missouri, and Beijing. The results showed that the use of non-local mobile source profiles did not impact the model apportionment results for vegetative detritus and biomass burning, but other primary source contributions were influenced by the use of non-local source profiles. Secondary organic carbon (SOC) contributions estimated by the CMB models with local and non-local profiles were compared to estimate of SOC from the EC tracer method and were found to be consistent with little bias. The results also showed that it is feasible to use the USA mobile profiles in China while model results were biased by using Chinese mobile profiles in the USA. Monthly and annual average concentrations of molecular markers in the source apportionment model showed lower sensitivity to source profiles than daily measurements, which has implications to the design of source apportionment studies.
Показать больше [+] Меньше [-]Pesticides in the Ebro River basin: Occurrence and risk assessment Полный текст
2016
Ccanccapa, Alexander | Masiá, Ana | Navarro-Ortega, Alícia | Picó, Yolanda | Barceló, Damià
Pesticides in the Ebro River basin: Occurrence and risk assessment Полный текст
2016
Ccanccapa, Alexander | Masiá, Ana | Navarro-Ortega, Alícia | Picó, Yolanda | Barceló, Damià
In this study, 50 pesticides were analyzed in the Ebro River basin in 2010 and 2011 to assess their impact in water, sediment and biota. A special emphasis was placed on the potential effects of both, individual pesticides and their mixtures, in three trophic levels (algae, daphnia and fish) using Risk Quotients (RQs) and Toxic Units (TUs) for water and sediments. Chlorpyrifos, diazinon and carbendazim were the most frequent in water (95, 95 and 70% of the samples, respectively). Imazalil (409.73 ng/L) and diuron (150 ng/L) were at the highest concentrations. Sediment and biota were less contaminated. Chlorpyrifos, diazinon and diclofenthion were the most frequent in sediments (82, 45 and 21% of the samples, respectively). The only pesticide detected in biota was chlorpyrifos (up to 840.2 ng g⁻¹). Ecotoxicological risk assessment through RQs showed that organophosphorus and azol presented high risk for algae; organophosphorus, benzimidazoles, carbamates, juvenile hormone mimic and other pesticides for daphnia, and organophosphorus, azol and juvenile hormone mimics for fish. The sum TUsite for water and sediments showed values < 1 for the three bioassays. In both matrices, daphnia and fish were more sensitive to the mixture of pesticide residues present.
Показать больше [+] Меньше [-]Pesticides in the Ebro River basin: Occurrence and risk assessment
Levels and profiles of polychlorinated dibenzo-p-dioxin and dibenzofurans in raw and treated water from water treatment plants in Shenzhen, China Полный текст
2016
Lu, Feina | Jiang, Yousheng | Wu, Dongting | Zhou, Jian | Li, Shengnong | Zhang, Jianqing
Levels and profiles of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) were analyzed for the first time in raw and treated water from five water treatment plants in Shenzhen, South China. The average PCDD/Fs concentrations were 32.93 pg/L (0.057 pg international toxic equivalent quantity (I-TEQ)/L) and 0.64 pg/L (0.021 pg I-TEQ/L) in raw and treated water, respectively. The removal rate of PCDD/Fs in terms of mass concentration varied from 93.4% to 98.8%, whereas a negative removal rate was observed in one plant in terms of TEQ concentration. The PCDD/Fs concentration in raw water was lower than most of the published data from other countries and regions, and the PCDD/Fs concentration in treated water was below the Maximum Contaminants Level (MCL) of 30 pg/L for dioxin in drinking water set by the US EPA. Historical pentachlorophenol usage, local waste incineration and industrial emissions, as well as surface runoff or even soil erosion, might be the main sources for PCDD/F pollution in water. The daily intake of PCDD/Fs for local residents from drinking water was estimated to be 0.69 fg I-TEQ/kg/day, which is negligible compared with that from food consumption (1.23 pg WHO-TEQ/kg/day) in the local area.
Показать больше [+] Меньше [-]Differing foraging strategies influence mercury (Hg) exposure in an Antarctic penguin community Полный текст
2016
Polito, Michael J. | Brasso, Rebecka L. | Trivelpiece, Wayne Z. | Karnovsky, Nina | Patterson, William P. | Emslie, Steven D.
Seabirds are ideal model organisms to track mercury (Hg) through marine food webs as they are long-lived, broadly distributed, and are susceptible to biomagnification due to foraging at relatively high trophic levels. However, using these species as biomonitors requires a solid understanding of the degree of species, sexual and age-specific variation in foraging behaviors which act to mediate their dietary exposure to Hg. We combined stomach content analysis along with Hg and stable isotope analyses of blood, feathers and common prey items to help explain inter and intra-specific patterns of dietary Hg exposure across three sympatric Pygoscelis penguin species commonly used as biomonitors of Hg availability in the Antarctic marine ecosystem. We found that penguin tissue Hg concentrations differed across species, between adults and juveniles, but not between sexes. While all three penguins species diets were dominated by Antarctic krill (Euphausia superba) and to a lesser extent fish, stable isotope based proxies of relative trophic level and krill consumption could not by itself sufficiently explain the observed patterns of inter and intra-specific variation in Hg. However, integrating isotopic approaches with stomach content analysis allowed us to identify the relatively higher risk of Hg exposure for penguins foraging on mesopelagic prey relative to congeners targeting epipelagic or benthic prey species. When possible, future seabird biomonitoring studies should seek to combine isotopic approaches with other, independent measures of foraging behavior to better account for the confounding effects of inter and intra-specific variation on dietary Hg exposure.
Показать больше [+] Меньше [-]The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils Полный текст
2016
Wen, Bei | Wu, Yali | Zhang, Hongna | Liu, Yu | Hu, Xiaoyu | Huang, Honglin | Zhang, Shuzhen
The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in seven species of plants from biosolids-amended soils were investigated. The PFOS and PFOA root concentration factors (Croot/Csoil) ranged from 1.37 to 4.68 and 1.69 to 10.3 (ng/groot)/(ng/gsoil), respectively, while the translocation factors (Cshoot/Croot) ranged from 0.055 to 0.16 and 0.093 to 1.8 (ng/gshoot)/(ng/groot), respectively. The PFOS and PFOA accumulations in roots correlated positively with root protein contents (P < 0.05), while negatively with root lipid contents (P < 0.05). These suggested the promotion effects of protein and inhibition effects of lipid on root uptake. The translocation factors correlated positively with the ratios between protein contents in shoots to those in roots (P < 0.05), showing the importance of protein on PFOS and PFOA translocation. This study is the first to reveal the different roles of protein and lipid in the accumulation and distribution of PFOS and PFOA in plants.
Показать больше [+] Меньше [-]Excessive apoptosis and defective autophagy contribute to developmental testicular toxicity induced by fluoride Полный текст
2016
Zhang, Shun | Niu, Qiang | Gao, Hui | Ma, Rulin | Lei, Rongrong | Zhang, Cheng | Xia, Tao | Li, Pei | Xu, Chunyan | Wang, Chao | Chen, Jingwen | Dong, Lixing | Zhao, Qian | Wang, Aiguo
Fluoride, a ubiquitous environmental contaminant, is known to impair testicular functions and fertility; however the underlying mechanisms remain obscure. In this study, we used a rat model to mimic human exposure and sought to investigate the roles of apoptosis and autophagy in testicular toxicity of fluoride. Sprague–Dawley rats were developmentally exposed to 25, 50, or 100 mg/L sodium fluoride (NaF) via drinking water from pre-pregnancy to post-puberty, and then the testes of offspring were excised on postnatal day 56. Our results demonstrated that developmental NaF exposure induced an enhanced testicular apoptosis, as manifested by a series of hallmarks such as caspase-3 activation, chromatin condensation and DNA fragmentation. Further study revealed that fluoride exposure elicited significant elevations in the levels of cell surface death receptor Fas with a parallel increase in cytoplasmic cytochrome c, indicating the involvement of both extrinsic and intrinsic apoptotic pathways. Intriguingly, fluoride treatment also simultaneously increased the number of autophagosomes and the levels of autophagy marker LC3-II but not Beclin1. Unexpectedly, the expression of p62, a substrate that is degraded by autophagy, was also significantly elevated, suggesting that the accumulated autophagosomes resulted from impaired autophagy degradation rather than increased formation. Importantly, these were associated with marked histopathological lesions including spermatogenic failure and germ cell loss, along with severe ultrastructural abnormalities in testes. Taken together, our findings provide deeper insights into roles of excessive apoptosis and defective autophagy in the aggravation of testicular damage, which could contribute to a better understanding of fluoride-induced male reproductive toxicity.
Показать больше [+] Меньше [-]