Уточнить поиск
Результаты 611-620 из 711
A universal method to assess the potential of phosphorus loss from soil to aquatic ecosystems
2010
Pöthig, Rosemarie | Behrendt, Horst | Opitz, Dieter | Furrer, Gerhard
Background, aim, and scope Phosphorus loss from terrestrial to the aquatic ecosystems contributes to eutrophication of surface waters. To maintain the world's vital freshwater ecosystems, the reduction of eutrophication is crucial. This needs the prevention of overfertilization of agricultural soils with phosphorus. However, the methods of risk assessment for the P loss potential from soils lack uniformity and are difficult for routine analysis. Therefore, the efficient detection of areas with a high risk of P loss requires a simple and universal soil test method that is cost effective and applicable in both industrialized and developing countries. Materials and methods Soils from areas which varied highly in land use and soil type were investigated regarding the degree of P saturation (DPS) as well as the equilibrium P concentration (EPC₀) and water-soluble P (WSP) as indicators for the potential of P loss. The parameters DPS and EPC₀ were determined from P sorption isotherms. Results Our investigation of more than 400 soil samples revealed coherent relationships between DPS and EPC₀ as well as WSP. The complex parameter DPS, characterizing the actual P status of soil, is accessible from a simple standard measurement of WSP based on the equation [graphic removed] . Discussion The parameter WSP in this equation is a function of remaining phosphorous sorption capacity/total accumulated phosphorous (SP/TP). This quotient is independent of soil type due to the mutual compensation of the factors SP and TP. Thus, the relationship between DPS and WSP is also independent of soil type. Conclusions The degree of P saturation, which reflects the actual state of P fertilization of soil, can be calculated from the easily accessible parameter WSP. Due to the independence from soil type and land use, the relation is valid for all soils. Values of WSP, which exceed 5 mg P/kg soil, signalize a P saturation between 70% and 80% and thus a high risk of P loss from soil. Recommendations and perspectives These results reveal a new approach of risk assessment for P loss from soils to surface and ground waters. The consequent application of this method may globally help to save the vital resources of our terrestrial and aquatic ecosystems.
Показать больше [+] Меньше [-]Behaviour and dynamics of di-ammonium phosphate in bauxite processing residue sand in Western Australia—II. Phosphorus fractions and availability
2010
Chen, C. R. | Phillips, I. R. | Wei, L. L. | Xu, Z. H.
Background, aim and scope The production of alumina involves its extraction from bauxite ore using sodium hydroxide under high temperature and pressure. This process yields a large amount of residue wastes, which are difficult to revegetate due to their inherent hostile properties—high alkalinity and sodicity, poor water retention and low nutrient availability. Although phosphorus (P) is a key element limiting successful ecosystem restoration, little information is available on the availability and dynamics of P in rehabilitated bauxite-processing residue sand (BRS). The major aim of this experiment was to quantify P availability and behaviour as affected by pH, source of BRS and di-ammonium phosphate (DAP) application rate. Materials and methods This incubation experiment was undertaken using three sources of BRS, three DAP application rates (low, without addition of DAP; medium, 15.07 mg P and 13.63 mg N of DAP per jar, 100 g BRS; and high, 30.15 mg P and 27.26 mg N per jar, 100 g BRS), and four BRS pH treatments (4, 7, 9 and 11 (original)). The moisture content was adjusted to 55% water holding capacity and each BRS sample was incubated at 25°C for a period of 119 days. After this period, Colwell P and 0.1 M H₂SO₄ extractable P in BRS were determined. In addition, P sequential fractionation was carried out and the concentration of P in each pool was measured. Results and discussion A significant proportion (37% recovered in Colwell P and 48% in 0.1 M H₂SO₄ extraction) of P added as DAP in BRS are available for plant use. The pH did not significantly affect 0.1 M H₂SO₄ extractable P, while concentrations of Colwell P in the higher initial pH treatments (pH 7, 9 and 11) were greater than in the pH 4 treatments. The labile fractions (sum of NH₄Cl (AP), bicarbonate and first sodium hydroxide extractable P (N(I)P)) consisted of 58-64% and 70-72% of total P in the medium and high DAP rate treatments, respectively. This indicates that most P added as DAP remained labile or moderately labile in BRS, either in solution, or in adsorbed forms on the surface of more crystalline P compounds, sesquioxides and carbonate, or associated with amorphous and some crystalline Al and Fe hydrous oxides. In addition, differences in the hydrochloric acid extractable P and the residual-P fractions among the treatments with and without DAP addition were relative small comparing with other P pools (e.g., NaOH extractable P pools), further indicating the limited capacity of BRS for fixing P added in Ca-P and other most recalcitrant forms. Conclusions P availability in the original BRS without addition of DAP was very low, mostly in recalcitrant form. It has been clearly demonstrated that significant proportions of P added as DAP could remain labile or moderately labile for plant use during the rehabilitation of bauxite-processing residue disposal areas. There was limited capacity of BRS for fixing P in more recalcitrant forms (e.g., Ca-P and residual-P). Concentrations of most P pools in BRS increased with the DAP application rate. The impact of the pH treatment on P availability varied with the type of P pools and the DAP rate. Recommendation and perspectives It is recommended that the development of appropriate techniques for more accurate estimation of P availability in BRS and the quantification of the potential leaching loss of P in BRS are needed for the accurate understanding of P availability and dynamics in BRS. In addition, application of organic matters (e.g., biosolids and biochar, etc.) to BRS may be considered for improving P availability and buffering capacity.
Показать больше [+] Меньше [-]Application of laser ablation ICP-MS and traditional techniques to the study of black crusts on building stones: a new methodological approach
2010
Barca, Donatella | Belfiore, Cristina Maria | Crisci, Gino Mirocle | La Russa, Mauro Francesco | Pezzino, Antonino | Ruffolo, Silvestro Antonio
INTRODUCTION: In this work, we propose an innovative application of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a methodological approach for the chemical characterisation of black crusts on stone monuments, associated with traditional micro-morphological (optical and scanning electron microscopy) and infrared spectroscopic techniques (FTIR). METHODS: This new approach was tested on black crusts developing on two marble substrates, one, the columns of the San Cosimato cloister in Rome, and the other, a sculpture representing an angel, located in Pessano con Bornago, a small industrial town near Milan. DISCUSSION: The main aim of this study was to develop and test the reliability of the LA-ICP-MS analytical method on black crusts and to explore the idea that trace element concentrations in black crusts can be applied to investigate their origin and the relations between concentrations of polluting elements in black crusts and environmental conditions. CONCLUSION: The results obtained by applying traditional techniques find considerable support in the innovative method used here, which could determine the concentrations of a large number of trace elements (including heavy metals) in the black crusts examined, and thus could also be used as a reliable indicator of environmental pollution.
Показать больше [+] Меньше [-]Dynamics of the water bloom-forming Microcystis and its relationship with physicochemical factors in Lake Xuanwu (China)
2010
Xu, Yao | Wang, Guoxiang | Yang, Wenbin | Li, Renhui
Purpose China's freshwater subtropical shallow lakes are increasingly eutrophic and susceptible to production of heavy growths or water blooms of cyanobacteria. One example was the heavy water bloom that occurred for the first time in Lake Xuanwu, in 2005, an urban lake located in Nanjing city. The aim of the present study was to determine dynamics of water bloom dominating Microcystis in this lake. Meanwhile, the relationship between environmental factors and Microcystis populations was also analyzed. Materials and methods Molecular detection, using quantitative polymerase chain reaction, was used in this lake to study the dynamics of the cyanobacterial community, its Microcystis populations, and the microcystin-producing Microcystis genotypes from August 2005 to November 2006. Results It was shown that Microcystis wesenbergii and Microcystis aeruginosa were the main components of the cyanobacterial blooms in Lake Xuanwu, and they coexisted with species of the filamentous cyanobacterial genera Anabaena, Planktothrix, and Anabaenopsis. Microcystis cells were detected during the entire survey period and in all sample sites. The cell abundance of Microcystis ranged from 3.6 × 10² cells ml⁻¹ to a peak of 3.8 × 10⁶ cells ml⁻¹. The ratio of mcyB-containing Microcystis subpopulations to the total Microcystis varied, ranging from 0.1% to 12.8%. The abundance of Microcystis containing the mcyB microcystin gene was shown to be significantly correlated with concentrations of total phosphorus and phosphate. Conclusions Water temperature was the primary factor affecting Microcystis abundance in the lake, and phosphorus loading was shown to be a main factor in governing the growth of both microcystin-producing genotype and total Microcystis population. Higher Microcystis cell counts at the bottom of the water column before and after appearance of water blooms in Lake Xuanwu suggested that Microcystis numbers in the water column, especially at the bottom of the water column, play an important role in forming the next water bloom.
Показать больше [+] Меньше [-]Degradation of phenols in olive oil mill wastewater by biological, enzymatic, and photo-Fenton oxidation
2010
Justino, Celine | Marques, Ana Gabriela | Duarte, Kátia Reis | Duarte, Armando Costa | Pereira, Ruth | Rocha-Santos, Teresa | Freitas, Ana Cristina
Background, aim, and scope Olive oil mill wastewater (OOMW) environmental impacts minimization have been attempted by developing more effective processes, but no chemical or biological treatments were found to be totally effective to mitigate their impact on receiving systems. This work is the first that reports simultaneously the efficiency of three different approaches: biological treatment by two fungal species (Trametes versicolor or Pleurotus sajor caju), enzymatic treatment by laccase, and chemical treatment by photo-Fenton oxidation on phenols removal. Materials and methods Those treatments were performed on OOMW with or without phenol supplement (p-coumaric, vanillin, guaiacol, vanillic acid, or tyrosol). OOMW samples resulted from treatments were extracted for phenols using liquid-liquid extraction and analyzed by gas chromatography coupled to mass spectrometry. Results Treatment with T. versicolor or P. sajor caju were able to remove between 22% and 74% and between 8% and 76% of phenols, respectively. Treatment by laccase was able to reduce 4% to 70% of phenols whereas treatment by photo-Fenton oxidation was responsible for 100% phenols reduction. Discussion Range of phenol degradation was equivalent between T. versicolor, P. sajor caju and laccase for p-coumaric, guaiacol, caffeic acid, and tyrosol in supplemented OOMW, which enhances this enzyme role in the biological treatment promoted by these two species. Conclusions Phenols were removed more efficiently by photo-Fenton treatment than by biological or enzymatic treatments. Recommendations and perspectives Use of fungi, laccase, or photo-Fenton presents great potential for removing phenols from OOMW. This should be further assessed by increasing the application scale and the reactor configurations effect on the performance, besides a toxicity evaluation of treated wastewater in comparison to raw wastewater.
Показать больше [+] Меньше [-]A new approach for chemical oxygen demand (COD) measurement at high salinity and low organic matter samples
2010
Kayaalp, Necati | Ersahin, Mustafa Evren | Ozgun, Hale | Koyuncu, Ismail | Kinaci, Cumali
Background, aim, and scope Chemical oxygen demand (COD) is used as a discharge standard parameter in wastewater treatment plant design, environmental modelling and many other applications. Chloride interference is an important problem of COD measurement for wastewaters containing low organic matter and high chloride concentrations. In case of chloride concentrations up to 2,000 mg/L, mercury sulphate addition at a ratio of 10:1 (HgSO₄:Cl⁻) can adequately mask the interference. When chloride concentration exceeds 2,000 mg/L, this ratio becomes ineffective to hinder the interference. At this point, it is proposed to use a greater and constant ratio of mercury sulphate addition. However, this application sometimes results in extra mercury sulphate addition which is not necessary. Even in some cases, greater addition of mercury sulphate alone is not a solution to erroneous measurement results. The purpose of the study is to determine optimum HgSO₄:Cl⁻ ratios according to the chloride concentrations of the samples and to show the importance of the strength of the digestion solution for the correct determination of the COD parameter. Materials and methods CODs of the synthetic samples containing varying COD and chloride concentrations were measured by closed reflux colorimetric method using three digestion solutions having different strengths. Results It is indicated in this study that a constant ratio of mercury sulphate can only prevent chloride interference up to a specific chloride concentration. Conclusions Achieving high precision results in case of low organic matter and high chloride concentration can only be possible by both decreasing the concentration of oxidant and adding mercury sulphate.
Показать больше [+] Меньше [-]Surface ozone measurements in the southwest of the Iberian Peninsula (Huelva, Spain)
2010
Adame Carnero, Jose A. | Bolívar, Juan P. | de la Morena, Benito A.
Introduction Photochemical ozone pollution of the lower troposphere (LT) is a very complex process involving meteorological, topographic emissions and chemical parameters. Ozone is considered the most important air pollutant in rural, suburban and industrial areas of many sites in the world since it strongly affects human health, vegetation and forest ecosystems, and its increase during the last decades has been significant. In addition, ozone is a greenhouse gas that contributes to climate change. For these reasons, it is necessary to carry out investigations that determine the behaviour of ozone at different locations. The aim of this work is to understand the levels and temporal variations of surface ozone in an industrial-urban region of the Southwest Iberian Peninsula. Materials and methods The study is based on ozone hourly data recorded during a 6-year period, 2000 to 2005 at four stations and meteorological data from a coastal station. The stations used were El Arenosillo and Cartaya—both coastal stations, Huelva—an urban site and Valverde—an inland station 50 km away from the coastline. The general characteristics of the ozone series, seasonal and daily ozone cycles as well as number of exceedances of the threshold established in the European Ozone Directive have been calculated and analysed. Results Analysis of the meteorological data shows that winter-autumn seasons are governed by the movement of synoptic weather systems; however, in the spring-summer seasons, both synoptic and mesoescale conditions exist. Average hourly ozone concentrations range from 78.5 ± 0.1 μg m⁻³ at Valverde to 57.8 ± 0.2 μg m⁻³ at Huelva. Ozone concentrations present a seasonal variability with higher values in summer months, while in wintertime, lower values are recorded. A seasonal daily evolution has also been found with minimum levels around 08:00 UTC, which occurs approximately 1-1.5 h after sunrise, whereas the maximum is reached at about 16:00 UTC. Furthermore, during summer, the maximum value at El Arenosillo and Valverde stations remains very uniformed until 20:00 UTC. These levels could be due to the photochemical production in situ and also to the horizontal and vertical ozone transport at El Arenosillo from the reservoir layers in the sea and in the case of Valverde, the horizontal transport, thanks to the marine breeze. Finally, the data have been evaluated relative to the thresholds defined in the European Ozone Directive. The threshold to protect human health has been exceeded during the spring and summer months mainly at El Arenosillo and Valverde. The vegetation threshold has also been frequently exceeded, ranging from 131 days at Cartaya up to 266 days at Valverde. Discussion The results in the seasonal and daily variations demonstrate that El Arenosillo and Valverde stations show higher ozone concentrations than Cartaya and Huelva during the spring and summer months. Under meteorological conditions characterized by land-sea breeze circulation, the daytime sea breeze transports the emissions from urban and industrial sources in the SW further inland. Under this condition, the area located downwind to the NE is affected very easily by high ozone concentrations, which is the case for the Valverde station. Nevertheless, according to this circulation model, the El Arenosillo station located at the coast SE from these sources is not directly affected by their emissions. The ozone concentrations observed at El Arenosillo can be explained by the ozone residual layer over the sea, similar to other coastal sites in the Mediterranean basin. Conclusions The temporal variations of the ozone concentrations have been studied at four measurement sites in the southwest of the Iberian Peninsula. The results obtained point out that industrial and urban emissions combined with specific meteorological conditions in spring and summer cause high ozone levels which exceed the recommended threshold limits and could affect the vegetation and human health in this area. Recommendations and perspectives This work is the first investigation related to surface ozone in this region; therefore, the results obtained may be a useful tool to air quality managers and policy-makers to apply possible air control strategies towards a reduction of ozone exceedances and the impact on human health and vegetation. Due to the levels, variability and underlying boundary layer dynamics, it is necessary to extend this research in this geographical area with the purpose of improving the understanding of photochemical air pollution in the Western Mediterranean Basin and in the south of the Iberian Peninsula.
Показать больше [+] Меньше [-]Effects of rhamnolipids and shear on initial attachment of Pseudomonas aeruginosa PAO1 in glass flow chambers
2010
Raya, Akhila | Sodagari, Maysam | Pinzon, Neissa M | He, Xin | Zhang Newby, Bi-min | Ju, Lu-Kwang
Background, aim, and scope Solid surfaces in contact with water have been found to be biofouled due to the attachment of various organisms. For better understanding of the biofilm formation, the important initial stage of bacterial attachment was investigated with Pseudomonas aeruginosa PAO1 as a model microorganism. Effects of the biosurfactant rhamnolipids and the shear conditions were particularly examined. Materials and methods A highly reproducible procedure was employed. The procedure involved monitoring and counting the number of attached cells on glass walls of the flow chambers, through which a PAO1 suspension was circulated and, subsequently, a saline solution was passed for washing. The experiments were made under different circulation rates (exerting different shear on the bacteria) and rhamnolipid concentrations. Results and discussions Reproducibility of the procedure was confirmed. The velocity profiles near the flow chamber wall were determined. Rhamnolipids, even at a very low concentration of 13 mg/l, were found to deter the bacterial attachment substantially. Prewashing the cells with a 100 mg/l rhamnolipid solution, however, did not affect the attachment significantly. As for the effect of shear, the PAO1 attachment showed an increasing-then-decreasing trend in the range investigated, i.e., 1.0 to 26 mN/m² shear stresses at the chamber wall. The diffusion-limited transport of cells to the chamber wall might have contributed to, but could not fully explain, the increasing attachment observed in the very low shear range (up to 3.5-5.0 mN/m²). Conclusions As compared to static systems, the flow chamber systems significantly improved the reproducibility of initial attachment results. Flow chamber systems were more suitable for experimental investigations of bacterial attachment to surfaces. Rhamnolipids were found to be potent antifoulants for PAO1 attachment on glass. The initial cell attachment increased with increasing shear at the very low shear range (up to 3.5-5.0 mN/m²), but the attachment could be minimized with further increase of the shear.
Показать больше [+] Меньше [-]Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress
2010
Ozturk, Sahlan | Aslim, Belma
Background, aim, and scope Polysaccharides are renewable resources representing an important class of polymeric materials of biotechnological interest, offering a wide variety of potentially useful products to mankind. Exopolysaccharides (EPSs) of microbial origin with a novel functionality, reproducible physico-chemical properties, stable cost and supply, became a better alternative to polysaccharides of algal origin. EPSs are believed to protect bacterial cells from desiccation, heavy metals or other environmental stresses, including hostimmune responses, and to produce biofilms, thus enhancing the cells chances of colonising special ecological niches. One of the most important stress factor is salt stress for microorganisms. The present investigation is aimed to determine correlation between salt resistance and EPS production by three cyanobacterial isolates (Synechocystis sp. BASO444, Synechocystis sp. BASO507 and Synechocystis sp. BASO511). It is also aimed to investigate the effect of salt concentrations on EPS production by cyanobacteria and effect of salt on monosaccharide composition of EPS. Materials and methods Cyanobacterial isolates were identified by 16 S rRNA analysis. Its salt (NaCl) tolerance and association with exopolysaccharides (EPSs) production in three cyanobacterial isolates were investigated. Also, EPS was analysed by HPLC for monomer characterization. Results Increased EPS production was associated with NaCl tolerance. The most tolerant isolate, Synechocystis sp. BASO444, secreted the most EPS (500 mg/L). EPS production by Synechocystis sp. BASO444, Synechocystis sp. BASO507 and Synechocystis sp. BASO511 was investigated following exposure to 0.2 and 0.4 M NaCl. Also, flasks containing medium without NaCl were inoculated in the same manner to serve as controls. The monosaccharide compositions of EPS produced by the three isolates following exposure to 0.2 M NaCl were analysed by HPLC. Control EPS of BASO444 was composed of glucose (97%) and galacturonic acid (3%). The composition of BASO511 (control) was glucose (95%), xylose (4.80%), arabinose (0.13%), glucuronic acid (0.03%) and galacturonic acid (0.04%). However, the composition of BASO507 (control) was glucose (0.98%), xylose (98.00%), arabinose (1.00%), glucuronic acid (0.01%) and galacturonic acid (0.01%). In the presence of 0.2 M NaCl, EPS compositions and ratios of three cyanobacterial isolates changed. Discussion Although hyperproduction of EPS in response to starvation, antiviral activity, thickening agent and cosmetic industry for product formulations has been reported for cyanobacteria, the effect of NaCl on EPS production in cyanobacteria is not a popular area of study. There are no clear reports correlating EPS production and NaCl tolerance. The gap in the data about the effect of NaCl on cyanobacterial EPS production was filled by this investigation, and the results of our study have important implications in both the industrial and environmental arenas. Conclusions Our results indicate that 1) exposure to elevated concentrations of NaCl affects the composition of EPS produced by Synechocystis sp. BASO444, Synechocystis sp. BASO507 and Synechocystis sp. BASO511, and 2) there is a correlation between NaCl tolerance and EPS production in some cyanobacteria. Recommendations and perspectives Differences in the monosaccharide composition and ratios of EPS may promote NaCl tolerance in these microorganisms. As well, these alternative composition polysaccharides may be important for industrial applications.
Показать больше [+] Меньше [-]Isolation and identification of new vasodilative substances in diesel exhaust particles
2010
Seki, Koh-ichi | Noya, Yoichi | Mikami, Yusuke | Taneda, Shinji | Suzuki, Akira K. | Kuge, Yūji | Ohkura, Kazue
Background, aim, and scope We recently developed a new isolation method for diesel exhaust particles (DEP), involving successive extraction with H₂O, sodium bicarbonate, and sodium hydroxide, in which the sodium hydroxide extract was found to consist of phenolic components. Analysis of the extract revealed that vasodilative-active nitrophenols are in DEP in significantly higher concentrations than those estimated by an earlier method involving a combination of solvent extraction and repeated chromatography. These findings indicated that our new procedure offers a simple, efficient, and reliable method for the isolation and identification of bioactive substances in DEP. This encouraged us to extend our work toward investigating new vasodilatory substances in the sodium bicarbonate extract. Materials and methods DEP were collected from the exhaust of a 4JB1-type engine (ISUZU Automobile Co., Tokyo, Japan). GC-MS analysis was performed with a GCMS-QP2010 instrument (Shimadzu, Kyoto, Japan). Results DEP dissolved in 1-butanol was successively extracted with water, sodium bicarbonate, and then aqueous sodium hydroxide. The sodium bicarbonate extract was neutralized and the resulting mixture of acidic components was subjected to reverse-phase (RP) column chromatography followed by RP-HPLC with fractions assayed for vasodilative activity. This led to the identification of terephthalic acid, p-hydroxybenzoic acid, isophthalic acid, phthalic acid, 3-hydroxy-4-nitrobenzoic acid, 4-hydroxy-3-nitrophenol, and 1,4,5-naphthalene tricarboxylic acid as components of DEP. Discussion The sodium bicarbonate extract was rich in aromatic carboxylic acid components. Repeated reverse-phase chromatography resulted in the successful isolation of several acidic substances including the new vasodilative materials, 4-hydroxy-3-nitrobenzoic acid, and 3-hydroxy-4-nitrobenzoic acid. Conclusions Our new fractionation method for DEP has made possible the isolation of new vasodilative compounds from the sodium bicarbonate extract.
Показать больше [+] Меньше [-]