Уточнить поиск
Результаты 641-650 из 4,044
Occurrence and trophic magnification of polybrominated diphenyl ethers (PBDEs) and their methoxylated derivatives in freshwater fish from Dianshan Lake, Shanghai, China Полный текст
2016
Zhou, Yihui | Chen, Qiaofeng | Du, Xinyu | Yin'ge, | Qiu, Yanling | Ye, Lu | Zhu, Zhiliang | Zhao, Jianfu
In this study, polybrominated diphenyl ethers (PBDEs) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs) were analyzed in eleven freshwater fish species from Dianshan Lake, Shanghai, China. The highest concentrations of PBDEs and MeO-PBDEs were found in snakehead, with mean values of 38 ng g−1 lw and 4.2 ng g−1 lw, respectively. BDE-47 was the predominant congener of PBDEs, followed by BDE-154. Congener pattern variation of PBDEs was observed among different fish species, implying differences in biotransformation potential among fish. Yellow catfish showed highest concentrations of BDE-99, -153 and -183, suggesting that it is more resistant to debromination than any other fish analyzed in the present study. Trophic magnification factors were in the range of 1.35–1.81 for all the PBDE congeners, but not for 2′-MeO-BDE-68. Negative relationship was observed between PBDEs concentration and sample size (length and weight), indicating fish size dilution effect.
Показать больше [+] Меньше [-]Removal of phyto-accessible copper from contaminated soils using zero valent iron amendment and magnetic separation methods: Assessment of residual toxicity using plant and MetPLATE™ studies Полный текст
2016
Feng, Nan | Ghoveisi, Hossein | Bitton, Gabriel | Bonzongo, Jean-Claude J.
Zero valent iron (ZVI) has been widely tested and used in remediation of both contaminated soils and groundwater, and in general, the in situ amendment of the contaminated media is used as remediation approach. However, concerns remain as to the potential detrimental effects of both the immobilized ZVI and the adsorbed pollutants as the treated system could undergo transformations over time. Accordingly, plans for soil remediation by in situ immobilization of sorbents should include a long-term monitoring of the treated systems. Here, we report on a comparative study in which artificially Cu-contaminated sandy and organic soils characterized by different metal binding capacities were treated by either (i) in situ immobilization of ZVI in the soils, or (ii) by a ZVI amendment followed by magnetic retrieval of formed ZVI-Cu complexes prior to plant growth studies. The latter relies on the combination of the high metal adsorption capacity and magnetism of ZVI. Two plant species, Lactuca sativa (lettuce) and Brassica juncea (Indian mustard) were used to assess the efficiency of the two treatment methods in eliminating the bioavailable fraction of Cu. Overall, the results showed that, if soil remediation by in situ immobilization reduces the bio-accessible fraction of Cu, treatment using ZVI amendment followed by magnetic separation performs better. The latter resulted in less Cu accumulated in the shoots and roots of plants. In parallel to the plant growth study, we used MetPLATE™, a short-term bioassay based on the inhibition of the β-galactosidase enzyme by the bioavailable fraction of heavy metal cations, to predict the efficiency of the two treatment methods with regard to the elimination of Cu phyto-toxicity. The results of the bioassay confirmed the trends of phyto-toxicity results, suggesting that MetPLATE™ could be an adequate alternative to the more expensive, labor intensive, and time consuming plant growth studies.
Показать больше [+] Меньше [-]Role of bovine serum albumin and humic acid in the interaction between SiO2 nanoparticles and model cell membranes Полный текст
2016
Wei, Xiaoran | Qu, Xiaolei | Ding, Lei | Hu, Jingtian | Jiang, Wei
Silica nanoparticles (SiO2 NPs) can cause health hazard after their release into the environment. Adsorption of natural organic matter and biomolecules on SiO2 NPs alters their surface properties and cytotoxicity. In this study, SiO2 NPs were treated by bovine serum albumin (BSA) and humic acid (HA) to study their effects on the integrity and fluidity of model cell membranes. Giant and small unilamellar vesicles (GUVs and SUVs) were prepared as model cell membranes in order to avoid the interference of cellular activities. The microscopic observation revealed that the BSA/HA treated (BSA-/HA-) SiO2 NPs took more time to disrupt membrane than untreated-SiO2 NPs, because BSA/HA adsorption covered the surface SiOH/SiO- groups and weakened the interaction between NPs and phospholipids. The deposition of SiO2 NPs on membrane was monitored by a quartz crystal microbalance with dissipation (QCM-D). Untreated- and HA-SiO2 NPs quickly disrupted the SUV layer on QCM-D sensor; BSA-SiO2 NPs attached on the membranes but only caused slow vesicle disruption. Untreated-, BSA- and HA-SiO2 NPs all caused the gelation of the positively-charged membrane, which was evaluated by the generalized polarity values. HA-SiO2 NPs caused most serious gelation, and BSA-SiO2 NPs caused the least. Our results demonstrate that the protein adsorption on SiO2 NPs decreases the NP-induced membrane damage.
Показать больше [+] Меньше [-]Effects of conventional and biodegradable microplastics on a marine ecosystem engineer (Arenicola marina) and sediment nutrient cycling Полный текст
2016
Green, Dannielle Senga | Boots, Bas | Sigwart, Julia | Jiang, Shan | Rocha, Carlos
Effects of microplastic pollution on benthic organisms and ecosystem services provided by sedimentary habitats are largely unknown. An outdoor mesocosm experiment was done to realistically assess the effects of three different types of microplastic pollution (one biodegradable type; polylactic acid and two conventional types; polyethylene and polyvinylchloride) at increasing concentrations (0.02, 0.2 and 2% of wet sediment weight) on the health and biological activity of lugworms, Arenicola marina (Linnaeus, 1758), and on nitrogen cycling and primary productivity of the sediment they inhabit. After 31 days, A. marina produced less casts in sediments containing microplastics. Metabolic rates of A. marina increased, while microalgal biomass decreased at high concentrations, compared to sediments with low concentrations or without microplastics. Responses were strongest to polyvinylchloride, emphasising that different materials may have differential effects. Each material needs to be carefully evaluated in order to assess their risks as microplastic pollution. Overall, both conventional and biodegradable microplastics in sandy sediments can affect the health and behaviour of lugworms and directly or indirectly reduce primary productivity of these habitats.
Показать больше [+] Меньше [-]Seasonal accumulation of persistent organic pollutants on a high altitude glacier in the Eastern Alps Полный текст
2016
Kirchgeorg, T. | Dreyer, A. | Gabrielli, P. | Gabrieli, J. | Thompson, L.G. | Barbante, C. | Ebinghaus, R.
The seasonal accumulations of perfluorinated substances (PFAS), polybrominated diphenyl ethers (PBDE) and polycyclic aromatic hydrocarbons (PAH) were measured in a 10 m shallow firn core from a high altitude glacier at Mt. Ortles (Italy, 3830 m above sea level) in South Tyrol in the Italian Eastern Alps. The most abundant persistent organic pollutants of each group were perfluorobutanoic acid (PFBA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) (for PFASs); BDE 47, BDE 99, BDE 209 (for PBDEs) and phenanthrene (PHE), fluoranthene (FLA) and pyrene (PYR) (for PAHs). All compounds show different extents of seasonality, with higher accumulation during summer time compared to winter. This seasonal difference mainly reflects meteorological conditions with a low and stable atmospheric boundary layer in winter and strong convective activity in summer, transformation processes during the transport of chemicals and/or post-depositional alterations. Change in the composition of the water-soluble PFCAs demonstrates the influence of meltwater percolation through the firn layers.
Показать больше [+] Меньше [-]Long-term microplastic retention causes reduced body condition in the langoustine, Nephrops norvegicus Полный текст
2016
Welden, Natalie A.C. | Cowie, Phillip R.
Microplastic represents a rising proportion of marine litter and is widely distributed throughout a range of marine habitats. Correspondingly, the number of reports of species containing microplastics increases annually. Nephrops norvegicus in the Firth of Clyde have previously been shown to retain large aggregations of microplastic fibres. The potential for N. norvegicus to retain plastic over an extended time period increases the likelihood of any associated negative impacts to the individual. This study represents the longest observation of the impacts of microplastic retention in invertebrates. We exposed N. norvegicus to plastic over eight months to determine the impacts of extended exposure. Over this period we compared the feeding rate, body mass, and nutritional state of plastic-fed N. norvegicus to that of fed and starved control groups. Following the experimental period, the plastic-fed langoustine contained microplastic aggregations comparable to those of small individuals from the Clyde Sea Area. Comparisons between fed, unfed and plastic-fed individuals indicated a reduction in feeding rate, body mass, and metabolic rate as well as catabolism of stored lipids in plastic contaminated animals. We conclude that N. norvegicus exposed to high levels of environmental microplastic pollution may experience reduced nutrient availability. This can result in reduced population stability and may affect the viability of local fisheries.
Показать больше [+] Меньше [-]Competitive adsorption of Pb and Cd on bacteria–montmorillonite composite Полный текст
2016
Du, Huihui | Chen, Wenli | Cai, Peng | Rong, Xingmin | Feng, Xionghan | Huang, Qiaoyun
The characteristics and mechanisms of competitive adsorption of trace metals on bacteria-associated clay mineral composites have never been studied, despite their being among the most common organic–mineral complexes in geological systems. Herein, competitive adsorption of Pb and Cd on Pseudomonas putida–montmorillonite composite was investigated through adsorption–desorption experiment, isothermal titration calorimetry (ITC), and synchrotron micro X-ray fluorescence (μ-XRF). From the experiment, stronger competition was observed on clay mineral than on bacteria–clay composite because more non-specific sites accounted for heavy metal adsorption on clay mineral surface at the studied pH 5. Both competing heavy metals tended to react with bacterial fractions in the composite, which was verified by the higher correlation of Cd (and Pb) with Zn (R2 = 0.41) elemental distribution than with Si (R2 = 0.10). ITC results showed that competitive adsorption exhibited a lower entropy change (ΔS) at the metal-sorbent interfaces compared with single-metal adsorption, revealing that Cd and Pb are bound to the same types of adsorption sites on the sorbent. The competitive effect on bacteria–clay composite was found to be helpful for a better understanding on the fixation, remobilization and subsequent migration of heavy metals in multi-metal contaminated environments.
Показать больше [+] Меньше [-]Metal(loid) distribution and Pb isotopic signatures in the urban environment of Athens, Greece Полный текст
2016
Kelepertzis, Efstratios | Komárek, Michael | Argyraki, Ariadne | Šillerová, Hana
Lead concentrations and isotopic compositions of contaminated urban soils and house dusts from Athens, Greece, have been determined to identify possible sources of Pb contamination and examine relationships between these two environmental media. Different soil particle sizes (<2000 μm, <200 μm, <100 μm, <70 μm, <32 μm) and chemical fractions (total, EDTA-extractable and acetic acid-extractable (HAc)) were analyzed for their Pb content and isotopic composition. Metal(loid)s (Pb, Zn, Cu, As, Ni, Cr, Mn, Fe) are significantly enriched in the finest fraction. The Pb isotopic compositions were similar for the different soil particle size fractions and different chemical extractions. The HAc extraction proved to be a useful procedure for tracing anthropogenic Pb in urban soil. The range of 206Pb/207Pb ratios (1.140–1.180) in Athens soil suggests that the Pb content represents an accumulated mixture of Pb deposited from past vehicular emissions and local natural sources. The contribution of anthropogenic Pb to total soil Pb ranged from 36% to 95%. The Pb isotopic composition of vacuum house dusts (206Pb/207Pb = 1.1.38–1.167) from Athens residents is mostly comparable to that of urban soil suggesting that exterior soil particles are transferred into homes. As a result, anthropogenic Pb in house dust from Athens urban environment principally originated from soil particles containing Pb from automobile emissions (former use of leaded gasoline).
Показать больше [+] Меньше [-]Effects of riverine suspended particulate matter on the post-dredging increase in internal phosphorus loading across the sediment-water interface Полный текст
2016
Liu, Cheng | Shao, Shiguang | Shen, Qiushi | Fan, Chengxin | Zhang, Lei | Zhou, Qi-Lin
Dredging is frequently used in the river mouths of eutrophic lakes to reduce internal phosphorus (P) loading from the sediment. However, the accumulation of P-adsorbed suspended particulate matter (SPM) from the inflowing rivers negatively affects the post-dredging sediment-water interface and ultimately increases internal P loading. Here, a 360-d experiment was carried out to investigate the influence of riverine SPM on the efficacy of dredging in reducing internal P loading. SPM was added to dredged and undredged sediments collected from the confluence area of Lake Chaohu. Several parameters related to internal P loading, including oxygen profile, soluble reactive P, and ferrous iron across the sediment-water interface, organic matter, alkaline phosphatase activity, and P fractions, were measured throughout the experimental period. The results showed that the P content (especially mobile P) in the sediment increased to the pre-dredging level with the accumulation of SPM in the dredged sediment. In addition, the P flux across the sediment-water interface increased with the accumulation of SPM. Several characteristics of SPM, including high organic matter content, mobile P, high activity of alkaline phosphatase, and high biological activity, were considered correlated with the post-dredging increase in internal P loading. Overall, this study showed that the heavily contaminated riverine SPM regulates the long-term efficacy of dredging as a nutrient management option in the confluence area. Management is needed to avoid or reduce this phenomenon during dredging projects of this nature.
Показать больше [+] Меньше [-]Fin whales and microplastics: The Mediterranean Sea and the Sea of Cortez scenarios Полный текст
2016
Fossi, Maria Cristina | Marsili, Letizia | Baini, Matteo | Giannetti, Matteo | Coppola, Daniele | Guerranti, Cristiana | Caliani, Ilaria | Minutoli, Roberta | Lauriano, Giancarlo | Finoia, Maria Grazia | Rubegni, Fabrizio | Panigada, Simone | Bérubé, Martine | Urbán Ramírez, Jorge | Panti, Cristina
The impact that microplastics have on baleen whales is a question that remains largely unexplored. This study examined the interaction between free-ranging fin whales (Balaenoptera physalus) and microplastics by comparing populations living in two semi-enclosed basins, the Mediterranean Sea and the Sea of Cortez (Gulf of California, Mexico). The results indicate that a considerable abundance of microplastics and plastic additives exists in the neustonic samples from Pelagos Sanctuary of the Mediterranean Sea, and that pelagic areas containing high densities of microplastics overlap with whale feeding grounds, suggesting that whales are exposed to microplastics during foraging; this was confirmed by the observation of a temporal increase in toxicological stress in whales. Given the abundance of microplastics in the Mediterranean environment, along with the high concentrations of Persistent Bioaccumulative and Toxic (PBT) chemicals, plastic additives and biomarker responses detected in the biopsies of Mediterranean whales as compared to those in whales inhabiting the Sea of Cortez, we believe that exposure to microplastics because of direct ingestion and consumption of contaminated prey poses a major threat to the health of fin whales in the Mediterranean Sea.
Показать больше [+] Меньше [-]