Уточнить поиск
Результаты 681-690 из 5,153
Effects of the bioconcentration and parental transfer of environmentally relevant concentrations of difenoconazole on endocrine disruption in zebrafish (Danio rerio) Полный текст
2018
Teng, Miaomiao | Qi, Suzhen | Zhu, Wentao | Wang, Yao | Wang, Dezhen | Dong, Kai | Wang, Chengju
Difenoconazole, a typical triazole fungicide, inhibits lanosterol-14R-demethylase (CYP51) to prevent fungal sterol synthesis and its residues are frequently detected in the environment due to its wide application. Previous studies have demonstrated that difenoconazole altered the triglyceride levels, and gene expression relevant to cholesterol biosynthesis in zebrafish. However, endocrine-disruption in the hypothalamus-pituitary-gonadal-liver (HPGL) axis, the effects of transferring to offspring, and the underlying mechanisms of difenoconazole in aquatic organisms are still unknown. In this study, we defined the effects of difenoconazole at environmental concentrations on endocrine disturbance using zebrafish as an experimental model. The results indicated that difenoconazole induced a significant change in the somatic index, and pathological variations in tissues, and steroid hormone levels. RT-PCR experiments further confirmed that difenoconazole significantly induced expression alteration of lhr, hsd3β, hsd11β, cyp19a in the ovary and star, cyp19a, cyp3c1 in the testis, and erα genes in livers. In addition, difenoconazole exposure in parental zebrafish affected the hatchability and length of its offspring. Moreover, the burdens of difenoconazole and difenoconazole alcohol in females were higher than in males. These findings highlighted that difenoconazole exposure at environmentally relevant concentrations elicited estrogenic endocrine-disruption effects via altering homeostasis of sex steroid hormones in the HPGL axis and the adverse effects can be transferred to the offspring.
Показать больше [+] Меньше [-]Contamination of short-chain chlorinated paraffins to the biotic and abiotic environments in the Bohai Sea Полный текст
2018
Jiang, Wanyanhan | Huang, Tao | Chen, Han | Lian, Lulu | Liang, Xiaoxue | Jia, Chenhui | Gao, Hong | Mao, Xiaoxuan | Zhao, Yuan | Ma, Jianmin
Short-chain chlorinated paraffins (SCCPs) have been produced and emitted intensively around the Bohai Sea, potentially causing risks to this unique ecosystem and one of primary fishery resources in China and busiest seaways in the world. Little is known about fate, cycling, and sources of SCCPs in the Bohai Sea biotic and abiotic environment. In this study, we combined a marine food web model with a comprehensive atmospheric transport-multiple phase exchange model to quantify SCCPs in the biotic and abiotic environment in the Bohai Sea. We performed multiple modeling scenario investigations to examine SCCP levels in water, sediment, and phytoplankton. We assessed numerically dry and wet depositions, biomagnification and bioaccumulation of SCCPs in the Bohai Sea marine food web. Results showed declining SCCP levels in water and sediment with increasing distance from the coastline, and so do dry and wet depositions. The net deposition overwhelmed the water-air exchange of SCCPs due to their current use in China, though the diffusive gas deposition fluctuated monthly subject to mean wind speed and temperature. A risk assessment manifests that SCCPs levels in the Bohai Sea fish species are at present not posing risks to the residents in the Bohai Sea Rim region. We identified that the SCCP emission sources in the south of the Bohai Sea made a primary contribution to its loadings to the seawater and fish contamination associated with the East Asian summer monsoon. In contrast, the SCCP emissions from the north and northwest regions of the Bohai Sea were major sources contributing to their loading and contamination to Bohai Sea food web during the wintertime, potentially driven by the East Asian winter monsoon.
Показать больше [+] Меньше [-]Adsorption and co-adsorption of graphene oxide and Ni(II) on iron oxides: A spectroscopic and microscopic investigation Полный текст
2018
Sheng, Guodong | Huang, Chengcai | Chen, Guohe | Sheng, Jiang | Ren, Xuemei | Hu, Baowei | Ma, Jingyuan | Wang, Xiangke | Huang, Yuying | Alsaedi, Ahmed | Hayat, Tasawar
Graphene oxide (GO) may strongly interact with toxic metal ions and mineral particles upon release into the soil environment. We evaluated the mutual effects between GO and Ni (Ni(II)) with regard to their adsorption and co-adsorption on two minerals (goethite and hematite) in aqueous phase. Results indicated that GO and Ni could mutually facilitate the adsorption of each other on both goethite and hematite over a wide pH range. Addition of Ni promoted GO co-adsorption mainly due to the increased positive charge of minerals and cation–π interactions, while the presence of GO enhanced Ni co-adsorption predominantly due to neutralization of positive charge and strong interaction with oxygen-containing functional groups on adsorbed GO. Increasing adsorption of GO and Ni on minerals as they coexist may thus reduce their mobility in soil. Extended X-ray absorption fine structure (EXAFS) spectroscopy data revealed that GO altered the microstructure of Ni on minerals, i.e., Ni formed edge-sharing surface species (at RNᵢ₋Fₑ∼3.2 Å) without GO, while a GO-bridging ternary surface complexes (at RNᵢ₋C∼2.49 Å and RNᵢ₋Fₑ∼4.23 Å) was formed with GO. These findings improved the understanding of potential fate and toxicity of GO as well as the partitioning processes of Ni ions in aquatic and soil environments.
Показать больше [+] Меньше [-]Comparison of PM2.5 chemical composition and sources at a rural background site in Central Europe between 1993/1994/1995 and 2009/2010: Effect of legislative regulations and economic transformation on the air quality Полный текст
2018
Pokorná, Petra | Schwarz, Jaroslav | Krejci, Radovan | Swietlicki, Erik | Havránek, Vladimír | Ždímal, Vladimír
From December 1993 to January 1995 and from October 2009 to October 2010, a total of 320 and 365 daily samples of the PM2.5 were collected at a rural background site (National Atmospheric Observatory Košetice) in Central Europe. The PM2.5 samples were analyzed for 29 and 26 elements respectively by Particle-Induced X-ray Emission (PIXE) and water-soluble inorganic ions by Ion Chromatography (IC) in 2009/2010. The Positive Matrix Factorization (PMF) was applied to the chemical composition of PM2.5 to determine its sources. The decreasing trends of almost all elements concentrations, especially the metals regulated by the EU Directive (2004/107/EC) are evident. The annual median ratios indicate a decrease in concentrations of the PM2.5 elements. The slight increase of K concentrations and Spearman's rank correlation coefficient rs 0.09 K/Se points to a rise in residential wood combustion. The S concentrations are nearly comparable (higher mean in 2009/2010, while the annual median ratio is under 1). The five major source types in the mid-1990s were ascribed to brown coal combustion, oil combustion, sea salt and dust – long-range transport, re-suspended dust and black coal combustion. The industrial combustion of brown and/or black coal (rs 0.75 Se/As, rs 0.57 Ga/Ge and rs 0.20 As/Zn) and oil (rs 0.72 V/Ni) of the regional origin dominated. In the 1990s, the potential source regions were the border area of Czech Republic, German and Poland (brown coal), the Moravia-Silesia region at the Czech-Polish border (black coal), and Slovakia, Austria, Hungary, and the Balkans (oil). In 2009/2010, the apportioned sources were sulfate, residential heating, nitrate, industry, re-suspended dust, and sea salt and dust – long-range transport. The secondary sulfate from coal combustion and residential biomass burning (rs 0.96, K/K+) of local origin dominated.The declining trend of the elemental concentrations and change in the source pattern of the regional background PM2.5 in Central Europe between the mid-1990s and 2009/10 reflects the economic transformation and impact of stricter legislation in Central Europe.
Показать больше [+] Меньше [-]Microplastics integrating the coastal planktonic community in the inner zone of the Río de la Plata estuary (South America) Полный текст
2018
Pazos, Rocío S. | Bauer, Delia E. | Gómez, Nora
This study explores in plankton samples the abundance, distribution, size, types (fibres and fragments), colours of the microplastics (MPs) and its relation with the characteristics of the plankton (size and morphology) of the Río de la Plata estuary. Water samples were collected in triplicate in freshwater-mixohaline tidal zone of the estuary, in ten sampling sites located along 150 km of coast, in two periods (September–November 2016 and April–June 2017). The results revealed the presence of MPs in all the samples analysed, with a dominance of fibres and sizes >500 ≤ 1000 μm, and blue colour being more frequent. The MPs distribution was significantly different among sampling sites, being more abundant in the most urbanized sites, sewage discharges and near the maximum turbidity front. The mean density, in the two samplings analysed, were 164 and 114 MPs m⁻³. The fibres amount was significantly different among sites. The MPs integrated a planktonic community dominated by pico-microphytoplankton, mainly conformed by filaments/chains and solitary forms and by micro-mesozooplankton. The comparative analysis of plankton and MPs demonstrated that a fraction of the latter showed a frequency range of size that coincides with the most common sizes of plankton (≤500 μm). The mean percentage of MPs items in relation to zooplankton was 0.36% (sampling 1) and 1.20% (sampling 2) and for phytoplankton was 0.0002% (sampling 1) and 0.0005% (sampling 2). The correlations between the MPs concentration and habitat quality (IHRPlata index) were statistically significant, on the contrary correlations between the MPs concentration and measured environmental variables were not found. The findings of this study emphasises the need for a better treatment of urban waste, which would contribute to reducing the entry of this pollutant into the ecosystem.The presence of microplastics in plankton samples on the coast of the Río de la Plata estuary.
Показать больше [+] Меньше [-]Removal of selenium containing algae by the bivalve Sinanodonta woodiana and the potential risk to human health Полный текст
2018
Zhou, Chuanqi | Huang, Jung-Chen | Liu, Fang | He, Shengbing | Zhou, Weili
Selenium (Se) is an essential micronutrient for animals and humans with a relatively narrow margin between nutritional essentiality and potential toxicity. Even though our previous studies have demonstrated algae could efficiently remove Se, mainly through volatilization, concern is raised about eco-risks posed by the remaining Se in algae. Here, Sinanodonta woodiana was investigated as a biofilter for the removal of Se-containing Chlorella vulgaris and for its potential risk to human health. Our results suggest filtration rates of S. woodiana were independent of Se levels in algal biomass, with a removal efficiency of between 60 and 78%. However, Se concentrations accumulated in mussels were significantly correlated with algal-borne Se levels, with a dietary assimilation efficiency ranging from 12% to 46%. Thus, a pilot biofiltration system was set up to assess uptake and depuration processes. The system was found to efficiently remove Se laden algae through the uptake by mussels, while 21% of Se in mussels could be depurated in 6 days. Among tissues, gills accumulated the highest Se concentration after assimilating algal-borne Se but shed Se compounds in the fastest pace during depuration. Health risks posed by consumption of mussels exposed to different sources of Se were further assessed. S. woodiana accumulated the highest Se concentration after exposure to waterborne SeMet, followed by dietary Se, selenite and control. The relatively higher Se levels were found in gills for all the treatments. After boiling, the most common method of cooking mussels, the greatest reduction in Se concentration occurred in mantle for the control and dietary Se groups and in muscle for the SeMet and selenite treatments. Therefore, within the safe limits, Se-containing mussels can be consumed as a dietary supplement. Overall, our research suggests incorporation of mussels into an algal treatment system can improve Se removal efficiency and also provide financial incentives for practitioners.
Показать больше [+] Меньше [-]Large-scale multi-stage constructed wetlands for secondary effluents treatment in northern China: Carbon dynamics Полный текст
2018
Wu, Haiming | Fan, Jinlin | Zhang, Jian | Ngo, Huu Hao | Guo, Wenshan
Multi-stage constructed wetlands (CWs) have been proved to be a cost-effective alternative in the treatment of various wastewaters for improving the treatment performance as compared with the conventional single-stage CWs. However, few long-term full-scale multi-stage CWs have been performed and evaluated for polishing effluents from domestic wastewater treatment plants (WWTP). This study investigated the seasonal and spatial dynamics of carbon and the effects of the key factors (input loading and temperature) in the large-scale seven-stage Wu River CW polishing domestic WWTP effluents in northern China. The results indicated a significant improvement in water quality. Significant seasonal and spatial variations of organics removal were observed in the Wu River CW with a higher COD removal efficiency of 64–66% in summer and fall. Obvious seasonal and spatial variations of CH₄ and CO₂ emissions were also found with the average CH₄ and CO₂ emission rates of 3.78–35.54 mg m⁻² d⁻¹ and 610.78–8992.71 mg m⁻² d⁻¹, respectively, while the higher CH₄ and CO₂ emission flux was obtained in spring and summer. Seasonal air temperatures and inflow COD loading rates significantly affected organics removal and CH₄ emission, but they appeared to have a weak influence on CO₂ emission. Overall, this study suggested that large-scale Wu River CW might be a potential source of GHG, but considering the sustainability of the multi-stage CW, the inflow COD loading rate of 1.8–2.0 g m⁻² d⁻¹ and temperature of 15–20 °C may be the suitable condition for achieving the higher organics removal efficiency and lower greenhouse gases (GHG) emission in polishing the domestic WWTP effluent. The obtained knowledge of the carbon dynamics in large-scale Wu River CW will be helpful for understanding the carbon cycles, but also can provide useful field experience for the design, operation and management of multi-stage CW treatments.
Показать больше [+] Меньше [-]Bioaugmentation of thiabendazole-contaminated soils from a wastewater disposal site: Factors driving the efficacy of this strategy and the diversity of the indigenous soil bacterial community Полный текст
2018
Papadopoulou, Evangelia S. | Genitsaris, Savvas | Omirou, Michalis | Perruchon, Chiara | Stamatopoulou, Anastasia | Ioannides, Ioannis | Karpouzas, Dimitrios G.
The application of the fungicide thiabendazole (TBZ) in fruit packaging plants (FPP) results in the production of effluents which are often disposed in adjacent field sites. These require remediation to prevent further environmental dispersal of TBZ. We assessed the bioaugmentation potential of a newly isolated TBZ-degrading bacterial consortium in a naturally contaminated soil (NCS) exhibiting a natural gradient of TBZ levels (12000, 400, 250 and 12 mg kg⁻¹). The effect of aging on bioaugmentation efficacy was comparatively tested in a soil with similar physicochemical properties and soil microbiota, which was artificially, contaminated with the same TBZ levels (ACS). The impact of bioaugmentation and TBZ on the bacterial diversity in the NCS was explored via amplicon sequencing. Bioaugmentation effectively removed TBZ from both soils at levels up to 400 mg kg⁻¹ but failed at the highest contamination level (12000 mg kg⁻¹). Dissipation of TBZ in bioaugmented samples showed a concentration-dependent pattern, while aging of TBZ had a slight effect on bioaugmentation efficiency. Bioaugmentation had no impact on the soil bacterial diversity, in contrast to TBZ contamination. Soils from the hotspots of TBZ contamination (12000 mg kg⁻¹) showed a drastically lower α-diversity driven by the dominance of β- and γ-proteobacteria at the expense of all other bacterial phyla, especially Actinobacteria. Overall, bioaugmentation with specialized microbial inocula could be an effective solution for the recovery of disposal sites contaminated with persistent chemicals like TBZ.
Показать больше [+] Меньше [-]Temporal dynamics of SO2 and NOX pollution and contributions of driving forces in urban areas in China Полный текст
2018
Zhao, Shuang | Liu, Shiliang | Hou, Xiaoyun | Cheng, Fangyan | Wu, Xue | Dong, Shikui | Beazley, Robert
SO₂ and NOX pollution have significantly reduced the air quality in China in past decades. Haze and acid rain have negatively affected the health of animals, plants, and human beings. Documented studies have shown that air pollution is influenced by multiple socioeconomic driving forces. However, the relative contributions of these driving forces are not well understood. In this study, using the structural equation model (SEM), we quantified the contributing effects of various forces driving air pollution in 2015 in prefecture-level cities of China. Our results showed that there has been significant control of SO₂ pollution in the past 20 years. The annual average SO₂ concentration has dropped from 83 μg/m³ in 1996 to 21 μg/m³ in 2015, while the annual average NOX concentration has increased from 47 μg/m³ in 1996 to 58 μg/m³ in 2015. We evaluated data on the annual average concentrations of SO₂, which in some cities may mask the differences of SO₂ concentrations between different months. Hence, SO₂ pollution should continue to be controlled in accordance with existing policies and regulations. However, we suggest that NOX should become the new focus of air pollution prevention and treatment. The SEM results showed that industrial scale, city size, and residents’ activities have a significant impact on NOX pollution. Among these, industrial scale had the highest contribution. The findings from our study can provide a theoretical basis for the formulation of NOX pollution control policy in China.
Показать больше [+] Меньше [-]Land-use type affects N2O production pathways in subtropical acidic soils Полный текст
2018
Zhang, Yushu | Ding, Hong | Zheng, Xiangzhou | Ren, Xiangyun | Cardenas, L. (Laura) | Carswell, Alison | Misselbrook, T. (Tom)
The change in land-use from woodland to crop production leads to increased nitrous oxide (N2O) emissions. An understanding of the main N2O sources in soils under a particular land can be a useful tool in developing mitigation strategies. To better understand the effect of land-use on N2O emissions, soils were collected from 5 different land-uses in southeast China: shrub land (SB), eucalyptus plantation (ET), sweet potato farmland (SP), citrus orchard (CO) and vegetable growing farmland (VE). A stable isotope experiment was conducted incubating soils from the different land use types at 60% water holding capacity (WHC), using 15NH4NO3 and NH415NO3 to determine the dominant N2O production pathway for the different land-uses. The average N2O emission rates for VE, CO and SP were 5.30, 4.23 and 3.36 μg N kg−1 dry soil d−1, greater than for SB and ET at 0.98 and 1.10 μg N kg−1 dry soil d−1, respectively. N2O production was dominated by heterotrophic nitrification for SB and ET, accounting for 51 and 50% of N2O emissions, respectively. However, heterotrophic nitrification was negligible (<8%) in SP, CO and VE, where autotrophic nitrification was a primary driver of N2O production, accounting for 44, 45 and 66% for SP, CO and VE, respectively. Denitrification was also an important pathway of N2O production across all land-uses, accounting for 35, 35, 49, 52 and 32% for SB, ET, SP, CO and VE respectively. Average N2O emission rates via autotrophic nitrification, denitrification and heterotrophic nitrification increased significantly with gross nitrification rates, NO3− contents and C:N ratios respectively, indicating that these were important factors in the N2O production pathways for these soils. These results contribute to our understanding and ability to predict N2O emissions from different land-uses in subtropical acidic soils and in developing potential mitigation strategies.
Показать больше [+] Меньше [-]