Уточнить поиск
Результаты 721-730 из 7,214
Decrypting the synergistic action of the Fenton process and biochar addition for sustainable remediation of real technogenic soil from PAHs and heavy metals
2022
Mazarji, Mahmoud | Minkina, Tatiana | Sushkova, Svetlana | Mandzhieva, Saglara | Barakhov, Anatoly | Barbashev, Andrey | Dudnikova, Tamara | Lobzenko, Iliya | Giannakis, Stefanos
The objective of this study was to demonstrate the feasibility and the relevance of combining biochar with the Fenton process for the simultaneous improvement of polycyclic aromatic hydrocarbons (PAHs) degradation and immobilization of heavy metals (HMs) in real soil remediation processes at circumneutral pH. The evaluation of PAHs degradation results was performed through multivariate statistical tools, including principal component analysis (PCA) and partial least squares (PLS). PCA showed that the level of biochar amendment decisively affected the degree of degradation of total PAHs, highlighting the role of biochar in catalyzing the Fenton reaction. Moreover, the PLS model was used to interpret the important features of each PAH's physico-chemical properties and its correlation to degradation efficiency. The electron affinity of PAHs correlated positively with the degradation efficiency only if the level of biochar amendment sat at 5%, explained by the ability of biochar to transfer the electrons to PAHs, improving the Fenton-like degradation. Moreover, the addition of biochar reduced the mobilization of HMs by their fixation on their surface, reducing the Fenton-induced metal leaching from the destruction of metal-organic complexes. In overall, these results on the high immobilization rate of HMs accompanied with additional moderate PAHs degradation highlighted the advantages of using a biochar-assisted Fenton-like reaction for sustainable remediation of technogenic soil.
Показать больше [+] Меньше [-]The leaching behaviour of herbicides in cropping soils amended with forestry biowastes
2022
James, Trevor K. | Ghanizadeh, Hossein | Harrington, Kerry C. | Bolan, Nanthi S.
Leaching of herbicides in cropping soils not only impacts the groundwater sources but also reduces their effect in controlling weeds. Leaching studies were carried out in two cropping soils and two forestry biowaste media, wood pulp and sawdust with two herbicides, atrazine and bromacil in a packed lysimeter with simulated rainfall. The hypothesis was that high organic matter forestry biowaste soil amendments reduce the leaching of herbicides through the soil profile. Results from the experimental setups varied due to the impact of the simulated rainfall on the surface structure of the media. Organic carbon content, pH and structure of the media were all factors which affected the leaching of the two herbicides. The hypothesis was true for wood pulp, but for sawdust, organic matter content had less bearing on the leaching of the herbicides than other over-riding factors, such as pH, that were media specific. In sawdust, its large particle size and related pore volume allowed preferential flow of herbicides. Overall, the data indicated that both forestry biowastes were retentive to herbicide leaching, but the effect was more pronounced with wood pulp than sawdust.
Показать больше [+] Меньше [-]Toxicity assessment of historical aqueous film-forming foams (AFFFs) using cell-based assays
2022
Ojo, Atinuke F. | Peng, Cheng | Annamalai, Prasath | Megharaj, Mallavarapu | Ng, J. (Jack)
Aqueous film-forming foam (AFFF) has historically contained high concentrations of long-chain per-and polyfluoroalkyl substances (PFAS), which have been linked with adverse health outcomes. However, the toxicity of historical AFFFs remains largely unknown, presenting uncertainties in their risk assessment. This study assessed the toxicity of historical AFFFs by exposing human liver cells (HepG2) to various dilutions of 3M Light Water AFFF or Ansulite AFFF (0.001%, 0.002%, 0.005%, 0.009%, 0.019%, 0.038%, 0.075%, 0.15%, and 0.3%) for 24 h. The effects of the two AFFF formulations on the cell viability, intracellular reactive oxygen species (ROS) production, Nrf2-ARE activity, and DNA damage were assessed by CellTiter 96® Aqᵤₑₒᵤₛ One Solution Cell Proliferation Assay (MTS kit), dichlorofluorescein diacetate assay, luciferase assay, and alkaline Comet assay, respectively. The results revealed that the two brands of AFFFs tested were toxic to HepG2 cells at dilutions lower than the recommended 3% application formulation. Specifically, exposure to 3M Light Water AFFF or Ansulite AFFF induced a dilution-dependent decrease in cell viability, increased intracellular ROS production, and increased Nrf2-ARE activity. However, except for the highest concentration (lowest dilution) of 3M Light Water AFFF tested (0.038%.), both 3M Light Water AFFF and Ansulite AFFF did not significantly induce cellular DNA damage. Overall, 3M Light Water AFFF was more toxic than Ansulite AFFF. The findings from this study provided valuable in vitro toxicity data that may better inform the health risk assessment of these historical AFFFs.
Показать больше [+] Меньше [-]Volatility of Springtime ambient organic aerosol derived with thermodenuder aerosol mass spectrometry in Seoul, Korea
2022
Kang, Hyun Gu | Kim, Youngjin | Collier, Sonya | Zhang, Qi | Kim, Hwajin
The volatilities of ambient organic aerosol (OA) components are important to forecasting OA formation with models. However, providing the OA volatility distribution inputs for models is challenging, and models often rely on measurements from chamber experiments. We measured the volatility of submicron ambient OA in Seoul during May/June of 2019 by connecting a thermodenuder to an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (AMS). We calculated a volatility basis set (VBS) of the organic aerosol with a thermodenuder mass transfer model and data from the thermodenuder set to various temperatures (30–200 °C). We found a large discrepancy between the measured ambient VBS and a reference VBS used in air quality models, with the ambient organics being less volatile. The results suggest that a modeling study that tries to account for this discrepancy may be needed to identify the impact it has on modeling outcomes. Chamber experiments aiming to determine VBSs for specific chemical systems should address limitations caused by wall losses and incomplete modeling parameters.
Показать больше [+] Меньше [-]Impact of different manure-derived dissolved organic matters on the fate of arsenic-antibiotic in co-contaminated paddy soils
2022
Yan, Mengmeng | Zhu, Changxiong | Song, Tingting | Li, Binxu | Su, Shiming | Li, Hongna
Manure application increases the transfer risk of antibiotic resistance to farmland. Especially, its impact remains unclear when it occurs in arsenic (As)-contaminated paddy soils, which is considered as a global environmental problem. In this work, we investigated the fate of antibiotic resistance genes (ARGs) in As-antibiotic co-contaminated paddy soils under the application of manure from different sources (pig manure, cow dung, and chicken manure). Differences in the aliphatic carbon and electron-donating capacities of these dissolved organic matters (DOM) regulated the transformation of iron and As by both biotic and abiotic processes. The regulation by pig manure was stronger than that by cow dung and chicken manure. DOM regulation increased the abundance of As-related functional genes (arsC, arrA, aioA, and arsM) in the soil and accelerated the transformation of As speciation, the highest proportion of As(III) being 45%–61%. Meanwhile, the continuous selection pressure provided by the highly toxic As(III) increased the risk of ARGs and mobile genetic elements (MGEs) via horizontal gene transfer. As-resistant bacteria, including Bacillus, Geobacter, and Desulfitobacterium, were finally considered as potential host bacteria for ARGs and MGEs. In summary, this study clarified the synergistic mechanism of As-antibiotic on the fate of ARGs in co-contaminated paddy soils, and provided practical guidance for the proper application of organic fertilizers.
Показать больше [+] Меньше [-]Plastisphere development in relation to the surrounding biotic communities
2022
Žuna Pfeiffer, Tanja | Špoljarić Maronić, Dubravka | Stević, Filip | Galir Balkić, Anita | Bek, Nikolina | Martinović, Ana | Mandir, Tomislav | Nikolašević, Rahela | Janjić, Doris
To study the early colonization processes, polyethylene terephthalate (PET) microfragments were immersed in Lake Sakadaš and the Drava River and sampled weekly together with the surrounding biotic communities - phytoplankton, zooplankton, epixylon in the lake and epilithon in the river. At the end of the study, a rise in water level occurred in the river, which altered the environmental conditions and plankton communities. In studied environments, all of the sampled biotic communities were diverse and abundant. Plastispheres formed in both waters by the seventh day of incubation and developed rapidly, reaching a peak in abundance on the last day of the study. Initial colonization was supported equally by planktonic and periphytic taxa in both environments, but after initial settlement, plastisphere assemblages were affected differently in the river and lake. This study suggests that PET microfragments are a suitable substrate for microphyte settlement and may provide an important pathway for their transport in dynamic freshwater floodplains and river systems.
Показать больше [+] Меньше [-]Impacts of microplastics on scleractinian corals nearshore Liuqiu Island southwestern Taiwan
2022
Lim, Yee Cheng | Chen, Chiu-Wen | Cheng, Yu-Rong | Chen, Chih-Feng | Dong, Cheng-Di
Seawater, sediments, and three genera of wild scleractinian corals were collected from four coral reef areas nearshore Liuqiu Island, southwestern Taiwan. Abundance, characteristics (sizes, colors, shapes, and polymer types), and enrichment of microplastics (MPs) in the corals, and their impacts on coral cover were determined. The average MPs abundances were 0.95, 0.77, and 0.36 item/g for Galaxea sp, Acropora spp, and Pocillopora sp, respectively. The MPs abundance was relatively higher on the coral surfaces than inside the skeletons, dominated by blue rayon-fibers, correspondingly observed in seawater and sediments. Large-size colorless MPs tended to be mis-ingested by Galaxea sp. (71%) compared with Pocillopora sp. (43%) and Acropora spp. (31%). The low hard coral cover (12.5%) observed at Yufu (L1) on the northeastern coastal zone nearby tourism center of Liuqiu Island where correspondingly associated with high MPs abundance in seawater (10 item/L), sediments (260 item/kg), and corals (0.60 item/g). Tourism induced sewage discharges and sailing activities significantly contributed to the MPs pollution, probably contributing to the loss of coral cover. High MPs enrichment in corals (EFMP = 25–283) shows that the marine MPs pollution can critically threaten coral reef ecosystems. Fibrous MPs present inside the coral skeleton serve as potential indicator of MPs’ impact on corals—with the dominance of textile-related rayon and polyester/PET microfibers in the coral reef zones. This study provided valuable information for coral conservation and coastal management.
Показать больше [+] Меньше [-]Effects of natural organic matter on the joint toxicity and accumulation of Cu nanoparticles and ZnO nanoparticles in Daphnia magna
2022
Yu, Qi | Wang, Zhuang | Wang, Guiyin | Peijnenburg, Willie J.G.M. | Vijver, Martina G.
Various modern products have metallic nanoparticles (MNPs) embedded to enhance products performance. Technological advances enable nowadays even multiple hybrid nanoparticles. Consequently, the future co-release of multiple MNPs will inevitably result in the presence of MNP mixtures in the environment. An important question is if the responses of mixtures of MNPs can be dealt with in a similar way as with the responses of biota to mixtures of metal salts. Moreover, natural organic matter (NOM) is an important parameter affecting the behavior and effect of MNPs. Herein, we determined the joint toxicity and accumulation of copper nanoparticles (CuNPs) and zinc oxide nanoparticles (ZnONPs) in Daphnia magna in the absence and presence of Suwannee River natural organic matter (SR-NOM), compared to the joint toxicity and accumulation of corresponding metal salts. The results of toxicity testing showed that the joint toxicity of CuNPs + ZnONPs was greater than the single toxicity of CuNPs or ZnONPs. The joint toxic action of CuNPs + ZnONPs was additive or more-than-additive for D. magna. A similar pattern was found in the toxicity of the mixtures of Cu- and Zn-salts from the literature data. The presence of SR-NOM had no significant impact on the joint toxicity of CuNPs + ZnONPs. The calculated component-specific contribution to overall toxicity indicated that SR-NOM increased the relative contribution of dissolved ions released from the MNPs to the toxicity of the binary mixtures at high-effect concentrations of individual MNPs. Moreover, dissolved Zn-ions released from the ZnONPs were found to dominate the joint toxicity of CuNPs + ZnONPs in the presence of SR-NOM. Furthermore, the results of the accumulation experiment displayed that the presence of SR-NOM significantly enhanced the accumulation of either CuNPs or ZnONPs in D. magna exposed to the MNP mixtures.
Показать больше [+] Меньше [-]The inhibition effect of bank credits on PM2.5 concentrations: Spatial evidence from high-polluting firms in China
2022
Yang, Fuyong | Xu, Qingsong | Li, Kunming | Yuen, Kum Fai | Shi, Wenming
Particulate Matter (PM₂.₅) pollution in China has been a primary concern for public health in recent years, which requires banks to appropriately control their credit supply to industries with high pollution, high energy consumption, and surplus capacity. For this reason, this paper examines economic determinants of PM₂.₅ concentrations and incorporates the spatial spillover effect of bank credit by employing the spatial Durbin model (SDM) under the stochastic impacts by regression on population, affluence and technology framework. Using China's provincial dataset from 1998 to 2016, the main findings are as follows: First, there is evidence in support of spatial dependence of PM₂.₅ concentrations and their inverted U-shaped relationship with economic growth in China. Second, PM₂.₅ concentrations in a province tend to increase as the level of its own urbanization increases, but they decrease as its own human capital and bank credit increase. Meanwhile, the level of neighboring urbanization positively influences a province's PM₂.₅ concentrations, whereas neighboring population size, industrialization, trade openness, and bank credit present negative impacts. Third, indirect effects of the SDM indicate significant and negative spatial spillover effect of bank credit on PM₂.₅ concentrations. These findings implicate policies on reforming economic growth, urbanization, human capital and bank credit to tackle PM₂.₅ pollution in China from a cross-provincial collaboration perspective.
Показать больше [+] Меньше [-]Characterization of the vertical variation in indoor PM2.5 in an urban apartment in China
2022
Ainiwaer, Subinuer | Chen, Yilin | Shen, Guofeng | Shen, Huizhong | Ma, Jianmin | Cheng, Hefa | Tao, Shu
Indoor air pollution has aroused increasing concerns due to its significant adverse health impacts. Indoor PM₂.₅ exposure assessments often rely on PM₂.₅ concentration measured at a single height, which overlooks the vertical variation of PM₂.₅ concentrations accompanied by various indoor activities. In this study, we characterize the vertical profile of PM₂.₅ concentration by monitoring PM₂.₅ concentration at eight different heights in the kitchen and the bedroom, respectively, using low-cost sensors with high temporal resolution. The localized enhancement of PM₂.₅ concentration in elevated heights in the kitchen during cooking was observed on clean and polluted days, showing dominating contribution from cooking activities. The source contribution from cooking and outdoor penetration was semi-quantified using regression models. Stratified source contribution from cooking activities was evident in the kitchen during the cooking period. The contribution in elevated heights (above 170 cm) almost tripled the contrition in bottom layers (below 140 cm). In contrast, little vertical variation was observed during other times of the day in the kitchen or the bedroom. The exposure level calculated using the multi-height measurement in this study is consistently higher than the exposure level estimated from the single-height (at 110 cm) measurement. A more significant discrepancy existed for the cookers (17.8%) than the non-cookers (13.5%). By profiling the vertical gradient of PM₂.₅ concentration, we show the necessity to conduct multi-height measurements or proper breathing-height measurements to obtain unbiased concentration information for source apportionment and exposure assessment. In particular, the multi-height measuring scheme will be crucial to inform household cooking emission regulations.
Показать больше [+] Меньше [-]