Уточнить поиск
Результаты 861-870 из 4,044
Arbuscular mycorrhizal wheat inoculation promotes alkane and polycyclic aromatic hydrocarbon biodegradation: Microcosm experiment on aged-contaminated soil Полный текст
2016
Ingrid, Lenoir | Lounès-Hadj Sahraoui, Anissa | Frédéric, Laruelle | Yolande, Dalpé | Joël, Fontaine
Very few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition. These dissipations observed in the inoculated soil resulted from several processes: (i) a light adsorption on roots (0.5% for PAHs), (ii) a bioaccumulation in roots (5.7% for PAHs and 6.6% for alkanes), (iii) a transfer in shoots (0.4 for PAHs and 0.5% for alkanes) and mainly a biodegradation. Whereas PAHs and alkanes degradation rates were respectively estimated to 12 and 47% with non-inoculated wheat, their degradation rates reached 18 and 48% with inoculated wheat. The mycorrhizal inoculation induced an increase of Gram-positive and Gram-negative bacteria by 56 and 37% compared to the non-inoculated wheat. Moreover, an increase of peroxidase activity was assessed in mycorrhizal roots. Taken together, our findings suggested that mycorrhization led to a better hydrocarbon biodegradation in the aged-contaminated soil thanks to a stimulation of telluric bacteria and hydrocarbon metabolization in mycorrhizal roots.
Показать больше [+] Меньше [-]The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon Полный текст
2016
Yu, Huan-Yun | Ding, Xiaodong | Li, Fangbai | Wang, Xiangqin | Zhang, Shirong | Yi, Jicai | Liu, Chuanping | Xu, Xianghua | Wang, Qi
Adequate silicon (Si) can greatly boost rice yield and improve grain quality through alleviating stresses associated with heavy metals and metalloids such as arsenic (As) and cadmium (Cd). The soil plant-available Si is relatively low in South China due to severe desilicification and allitization of the soils in this region. Conversely, pollution of heavy metals and metalloids in the soils of this region occurs widely, especially As and Cd pollution in paddy soil. Therefore, evaluating the plant availability of Si in paddy soil of South China and examining its correlation with the availability of heavy metals and metalloids are of great significance. Accordingly, in our study, 107 pairs of soil and rice plant samples were collected from paddy fields contaminated by As and Cd in South China. Significantly positive correlations between Si in rice plants and Si fractions in soils extracted with citric acid, NaOAc-HOAc buffer, and oxalate-ammonium oxalate buffer suggest that these extractants are more suitable for use in extracting plant-available Si in the soils of our present study. Significantly negative correlations between different Si fractions and As or Cd in rice plant tissues and negative exponential correlations between the molar ratios of Si to As/Cd in rice roots, straws, husks or grains and As/Cd in rice grains indicate that Si can significantly alleviate the accumulation of As/Cd from soils to the rice plants. Finally, a contribution assessment of soil properties to As/Cd accumulation in rice grains based on random forest showed that in addition to Si concentrations in soil or rice plants, other factors such as Fe fractions and total phosphorus also contributed largely to As/Cd accumulation in rice grains. Overall, Si exhibited its unique role in mitigating As or Cd stress in rice, and our study results provide strong field evidence for this role.
Показать больше [+] Меньше [-]Exposure and size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons among the population using different household fuels Полный текст
2016
Shen, Guofeng | Chen, Yuanchen | Du, Wei | Lin, Nan | Wang, Xilong | Cheng, Hefa | Liu, Junfeng | Xue, Chunyu | Liu, Guangqing | Zeng, E. Y. (Eddy Y.) | Xing, Baoshan | Tao, Shu
Polycyclic aromatic hydrocarbons (PAHs) derivatives like nitrated and oxygenated PAHs are of growing concerns because of considerably higher toxicity and important roles during atmospheric chemical reactions. Residential solid fuel combustion is likely to be one large primary source of these pollutants in developing countries. In this study, inhalation exposure to nitrated and oxygenated PAH derivatives was evaluated among rural residents using carried samplers. The exposure levels of individual nitrated PAHs ranged from 4.04 (9-nitrated phenanthrene) to 89.8 (9-nitrated anthracene) pg/m3, and of oxy-PAHs were 0.570 (benzo[a]anthracene-7, 12-dione) to 7.99 (Benzanthrone) ng/m3, generally higher in wood user than that in anthracite user. A majority of derivatives in particle presented in PM2.5 (80% for nitrated naphthalene and over 90% for other targets) and even fine PM1.0. Mass fractions of PAH derivatives in fine and ultra-fine particles were significantly higher than the fractions of corresponding parent PAHs, indicating more adverse health outcomes induced by these derivatives. The inhalation exposure levels for residents adopting wood gasifier burners was significantly lower than the documented results for those burning wood in typical built-in brick stoves, and comparable to those using LPG and electricity, which provided vital information for clean stove development and intervention programs.
Показать больше [+] Меньше [-]Effect of fluoride on the cell viability, cell organelle potential, and photosynthetic capacity of freshwater and soil algae Полный текст
2016
Chae, Yooeun | Kim, Dokyung | An, Youn-Joo
Although fluoride occurs naturally in the environment, excessive amounts of fluoride in freshwater and terrestrial ecosystems can be harmful. We evaluated the toxicity of fluoride compounds on the growth, viability, and photosynthetic capacity of freshwater (Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata) and terrestrial (Chlorococcum infusionum) algae. To measure algal growth inhibition, a flow cytometric method was adopted (i.e., cell size, granularity, and auto-fluorescence measurements), and algal yield was calculated to assess cell viability. Rhodamine123 and fluorescein diacetate were used to evaluate mitochondrial membrane potential (MMA, ΔΨm) and cell permeability. Nine parameters related to the photosynthetic capacity of algae were also evaluated. The results indicated that high concentrations of fluoride compounds affected cell viability, cell organelle potential, and photosynthetic functions. The cell viability measurements of the three algal species decreased, but apoptosis was only observed in C. infusionum. The MMA (ΔΨm) of cells exposed to fluoride varied among species, and the cell permeability of the three species generally decreased. The decrease in the photosynthetic activity of algae may be attributable to the combination of fluoride ions (F−) with magnesium ions (Mg2+) in chlorophyll. Our results therefore provide strong evidence for the potential risks of fluoride compounds to microflora and microfauna in freshwater and terrestrial ecosystems.
Показать больше [+] Меньше [-]Nickel toxicity to benthic organisms: The role of dissolved organic carbon, suspended solids, and route of exposure Полный текст
2016
Custer, Kevin W. | Hammerschmidt, Chad R. | Burton, G Allen
Nickel bioavailability is reduced in the presence of dissolved organic carbon (DOC), suspended solids (TSS), and other complexing ligands; however, no studies have examined the relative importance of Ni exposure through different compartments (water, sediment, food). Hyalella azteca and Lymnaea stagnalis were exposed to Ni-amended water, sediment, and food, either separately or in combination. Both organisms experienced survival and growth effects in several Ni compartment tests. The DOC amendments attenuated L. stagnalis Ni effects (survival, growth, and ⁶²Ni bioaccumulation), and presence of TSS exposures demonstrated both protective and synergistic effects on H. azteca and L. stagnalis. ⁶²Ni trophic transfer from food to H. azteca and L. stagnalis was negligible; however, bioaccumulating ⁶²Ni was attributed to ⁶²Ni-water (⁶²Ni flux from food), ⁶²Ni-TSS, and ⁶²Ni-food. Overall, H. azteca and L. stagnalis Ni compartment toxicity increased in the following order: Ni-water >> Ni-sediment >> Ni-all (water, sediment, food) >> Ni-food.
Показать больше [+] Меньше [-]Temporal and spatial variations in road traffic noise for different frequency components in metropolitan Taichung, Taiwan Полный текст
2016
Wang, Ven-Shing | Lo, Ei-Wen | Liang, Zhixiang | Chao, Keh-Ping | Bao, Bo-Ying | Chang, T. Y. (Ta-Yuan)
Road traffic noise exposure has been associated with auditory and non-auditory health effects, but few studies report noise characteristics. This study determines 24-h noise levels and analyzes their frequency components to investigate associations between seasons, meteorology, land-use types, and traffic. We set up 50 monitoring stations covering ten different land-use types and conducted measurements at three times of the year to obtain 24-h-average A-weighted equivalent noise levels (LAeq,24h) and frequency analyses from 2013 to 2014 in Taichung, Taiwan. Information on land-use types, road parameters, traffic flow rates, and meteorological variables was also collected for analysis with the annual averages of road traffic noise and its frequency components. The annual average LAeq,24h in Taichung was 66.4 ± 4.7 A-weighed decibels (dBA). Significant differences in LAeq,24h and frequency components were observed between land-use types (all p-values < 0.001), but not between seasons, with the highest two noise levels of 71.2 ± 1.0 dBA and 70.0 ± 2.6 dBA measured in stream-channel and commercial areas, with the highest component being 61.4 ± 5.3 dBA at 1000 Hz. Road width, traffic flow rates, and land-use types were significantly associated with annual average LAeq,24h (all p-values < 0.050). Noise levels at 125 Hz had the highest correlation with total traffic (Spearman's coefficient = 0.795) and the highest prediction in the multiple linear regression (R2 = 0.803; adjusted R2 = 0.765). These findings reveal the spatial variation in road traffic noise exposure in Taichung. The highest correlation and predictive capacity was observed between this variation and noise levels at 125 Hz. We recommend that governmental agencies should take actions to reduce noise levels from traffic vehicles.
Показать больше [+] Меньше [-]Assessing uncertainty in pollutant build-up and wash-off processes Полный текст
2016
Wijesiri, Buddhi | Egodawatta, Prasanna | McGree, James | Goonetilleke, Ashantha
Assessing build-up and wash-off process uncertainty is important for accurate interpretation of model outcomes to facilitate informed decision making for developing effective stormwater pollution mitigation strategies. Uncertainty inherent to pollutant build-up and wash-off processes influences the variations in pollutant loads entrained in stormwater runoff from urban catchments. However, build-up and wash-off predictions from stormwater quality models do not adequately represent such variations due to poor characterisation of the variability of these processes in mathematical models. The changes to the mathematical form of current models with the incorporation of process variability, facilitates accounting for process uncertainty without significantly affecting the model prediction performance. Moreover, the investigation of uncertainty propagation from build-up to wash-off confirmed that uncertainty in build-up process significantly influences wash-off process uncertainty. Specifically, the behaviour of particles <150 μm during build-up primarily influences uncertainty propagation, resulting in appreciable variations in the pollutant load and composition during a wash-off event.
Показать больше [+] Меньше [-]Size distributions of n-alkanes, fatty acids and fatty alcohols in springtime aerosols from New Delhi, India Полный текст
2016
Kang, Mingjie | Fu, Pingqing | Aggarwal, Shankar G. | Sudhanshu Kumar, | Zhao, Ye | Sun, Yele | Wang, Zifa
Size-segregated aerosol samples were collected in New Delhi, India from March 6 to April 6, 2012. Homologous series of n-alkanes (C19C33), n-fatty acids (C12C30) and n-alcohols (C16C32) were measured using gas chromatography/mass spectrometry. Results showed a high-variation in the concentrations and size distributions of these chemicals during non-haze, haze, and dust storm days. In general, n-alkanes, n-fatty acids and n-alcohols presented a bimodal distribution, peaking at 0.7–1.1 μm and 4.7–5.8 μm for fine modes and coarse modes, respectively. Overall, the particulate matter mainly existed in the coarse mode (≥2.1 μm), accounting for 64.8–68.5% of total aerosol mass. During the haze period, large-scale biomass burning emitted substantial fine hydrophilic smoke particles into the atmosphere, which leads to relatively larger GMDs (geometric mean diameter) of n-alkanes in the fine mode than those during the dust storms and non-haze periods. Additionally, the springtime dust storms transported a large quantity of coarse particles from surrounding or local areas into the atmosphere, enhancing organic aerosol concentration and inducing a remarkable size shift towards the coarse mode, which are consistent with the larger GMDs of most organic compounds especially in total and coarse modes. Our results suggest that fossil fuel combustion (e.g., vehicular and industrial exhaust), biomass burning, residential cooking, and microbial activities could be the major sources of lipid compounds in the urban atmosphere in New Delhi.
Показать больше [+] Меньше [-]Microplastics in Taihu Lake, China Полный текст
2016
Su, Lei | Xue, Yingang | Li, Lingyun | Yang, Dongqi | Kolandhasamy, Prabhu | Li, Daoji | Shi, Huahong
In comparison with marine environments, the occurrence of microplastics in freshwater environments is less understood. In the present study, we investigated microplastic pollution levels during 2015 in Taihu Lake, the third largest Chinese lake located in one of the most developed areas of China. The abundance of microplastics reached 0.01 × 106–6.8 × 106 items/km2 in plankton net samples, 3.4–25.8 items/L in surface water, 11.0–234.6 items/kg dw in sediments and 0.2–12.5 items/g ww in Asian clams (Corbicula fluminea). The average abundance of microplastics was the highest in plankton net samples from the southeast area of the lake and in the sediments from the northwest area of the lake. The northwest area of the lake was the most heavily contaminated area of the lake, as indicated by chlorophyll-α and total phosphorus. The microplastics were dominated by fiber, 100–1000 μm in size and cellophane in composition. To our best knowledge, the microplastic levels measured in plankton net samples collected from Taihu Lake were the highest found in freshwater lakes worldwide. The ratio of the microplastics in clams to each sediment sample ranged from 38 to 3810 and was negatively correlated to the microplastic level in sediments. In brief, our results strongly suggest that high levels of microplastics occurred not only in water but also in organisms in Taihu Lake.
Показать больше [+] Меньше [-]Sub-lethal effects of water-based drilling muds on the deep-water sponge Geodia barretti Полный текст
2016
Edge, Katelyn J. | Johnston, Emma L. | Dafforn, Katherine A. | Simpson, Stuart L. | Kutti, Tina | Bannister, Raymond J.
Offshore oil and gas activities can result in the discharge of large amounts of drilling muds. While these materials have generally been regarded as non-toxic to marine organisms, recent studies have demonstrated negative impacts to suspension feeding organisms. We exposed the arctic-boreal sponge Geodia barretti to the primary particulate components of two water-based drilling muds; barite and bentonite. Sponges were exposed to barite, bentonite and a natural reference sediment at a range of total suspended solid concentrations (TSS = 0, 10, 50 or 100 mg/L) for 12 h after which we measured a suite of biomarker responses (lysosomal membrane stability, lipid peroxidation and glutathione). In addition, we compared biomarker responses, organic energy content and metal accumulation in sponges, which had been continuously or intermittently exposed to suspended barite and natural sediment for 14 d at relevant concentrations (10 and 30 mg TSS/L). Lysosomal membrane stability was reduced in the sponges exposed to barite at 50 and 100 mg TSS/L after just 12 h and at 30 mg TSS/L for both continuous and intermittent exposures over 14 d. Evidence of compromised cellular viability was accompanied by barite analysis revealing concentrations of Cu and Pb well above reference sediments and Norwegian sediment quality guidelines. Metal bioaccumulation in sponge tissues was low and the total organic energy content (determined by the elemental composition of organic tissue) was not affected. Intermittent exposures to barite resulted in less toxicity than continuous exposure to barite. Short term exposures to bentonite did not alter any biomarker responses. This is the first time that these biomarkers have been used to indicate contaminant exposure in an arctic-boreal sponge. Our results illustrate the potential toxicity of barite and the importance of assessments that reflect the ways in which these contaminants are delivered under environmentally realistic conditions.
Показать больше [+] Меньше [-]