Уточнить поиск
Результаты 891-900 из 7,290
Water with low ionic strength recovers the passivated birnessite-coated sand reactivity towards lincomycin removal Полный текст
2022
Ying, Jiaolong | Qin, Xiaopeng | Wen, Dongguang | Huang, Fuyang | Liu, Fei
The ionic strength of infiltration water changes with the seasonal alternation of irrigation sources. In this study, reactivity changes of birnessite-coated sand with the fluctuations of ionic strength of infiltration water (i.e. from groundwater to rainwater) and the involved mechanism were investigated through column experiments. Birnessite-coated sand was less reactive in groundwater than in rainwater because of the higher cation content and higher pH of groundwater. The cations in the groundwater were adsorbed on birnessite-coated sand and then desorbed in presence of a dilute aqueous solution represented by rainwater. The reactivity of the passivated birnessite-coated sand was recovered instantaneously, and approximately one-third of the pristine reactivity was restored. During recovery, Na⁺ desorption and lincomycin (LIN) removal both exhibited a two-stage reaction pattern. The LIN removal correlated with Na⁺ desorption (r = 0.99) so that the reactive sites that were binding 5.602 μmol of Na⁺ became available for 1 μmol of LIN removal. These results suggest that the reactivity of manganese oxides toward organic contaminant is associated with the ionic strength of infiltration water and indicate that the partial reactivity can be naturally restored.
Показать больше [+] Меньше [-]Towards a North Pacific long-term monitoring program for ocean plastic pollution: A systematic review and recommendations for shorelines Полный текст
2022
Increased organized monitoring is key to improving our understanding of marine debris on shorelines. Shorelines are demonstrated sinks for marine debris but efforts to quantify debris often fail to capture and report core variables and survey design techniques necessary to ensure study repeatability, comparability and to provide meaningful results. Here, we systematically review the available literature regarding marine debris distribution and abundance on shorelines of countries bordering the North Pacific Ocean (NPO), which are demonstrated to have unusually high marine debris abundance and diversity both at the ocean surface and stranded on shorelines. The majority of the 81 papers documenting shoreline debris in the NPO were studies that took place for less than one year (76.5%). Additionally, most sampling sites were visited only once (57.3%). Precise site locations (GPS coordinates) were provided in only 44.4% of the evaluated studies. Debris quantities were reported using nine different measurement units, with item counts per area and item counts per mass being most commonly reported for macro- and microplastics, respectively. Taken together, most of the reviewed studies could not be repeated by others given the information provided. We propose a series of guidelines with regard to marine debris shoreline sampling metrics, indicators, methods, and target goals in the NPO in order to improve comparability and repeatability. These follow the basic tenets of environmental survey design, which when not accounted for, can limit the applicability and value of large-scale shoreline monitoring efforts.
Показать больше [+] Меньше [-]Dual effects of nZVI on maize growth and water use are positively mediated by arbuscular mycorrhizal fungi via rhizosphere interactions Полный текст
2022
Yang, Yu-Miao | Naseer, Minha | Zhu, Ying | Zhu, Shuang-Guo | Wang, Song | Wang, Bao-Zhong | Wang, Jing | Zhu, Hao | Wang, Wei | Tao, Hong-Yan | Xiong, You-Cai
Nanoscale zero-valent iron (nZVI) might generate positive and negative effects on plant growth, since it acts as either hazardous or growth-promotion role. It is still unclear whether such dual roles can be mediated by arbuscular mycorrhizal fungi (AMF) in plant-AMF symbiosis. We first identified that in 1.5 g kg⁻¹ nZVI (≤1.5 g kg⁻¹ positively), maize biomass was increased by 15.83%; yet in 2.0 g kg⁻¹ nZVI, it turned to be declined by 6.83%, relative to non-nZVI condition (CK, p < 0.05), showing a negative effect. Interestingly, the inoculation of AMF massively improved biomass by 45.18% in 1.5 g kg⁻¹ nZVI, and relieved the growth inhibition by 2.0 g kg⁻¹ nZVI. The event of water use efficiency followed similar trend as that of biomass. We found that proper concentration of nZVI can positively interact with rhizosphere AMF carrier, enabling more plant photosynthetic carbon to be remobilized to mycorrhiza. The scanning of transmission electron microscopy showed that excessive nZVI can infiltrate into root cortical cells and disrupt cellular homeostasis mechanism, significantly increasing iron content in roots by 76.01% (p < 0.05). Simultaneously, the images of scanning electron microscopy showed that nZVI were attached on root surface to form an insoluble iron ion (Fe³⁺) layer, hindering water absorption. However, they were efficiently immobilized and in situ intercepted by extraradical hyphae in mycorrhizal-nZVI symbiosis, lowering iron translocation efficiency by 6.07% (p < 0.05). Herein, the optimized structure remarkably diminished aperture blockage at root surface and improved root activities by 30.06% (p < 0.05). Particularly, next-generation sequencing demonstrated that appropriate amount of nZVI promoted the colonization and development of Funneliformis mosseae as dominant species in rhizosphere, confirming the positive interaction between AMF and nZVI, and its regulatory mechanism. Therefore, dual effects of nZVI can be actively mediated by AMF via rhizosphere interactions. The findings provided new insights into the safe and efficient application of nanomaterials in agriculture.
Показать больше [+] Меньше [-]Exposure to dechlorane 602 induces perturbation of gut immunity and microbiota in female mice Полный текст
2022
Li, Yunping | Guo, Tai L. | Xie, Heidi Qunhui | Xu, Li | Liu, Yin | Zheng, Liping | Yu, Shuyuan | Chen, Guomin | Ji, Jiajia | Jiang, Shuai | Xu, Dan | Hang, Xiaoming | Zhao, Bin
The homeostasis of gut immunity and microbiota are associated with the health of the gut. Dechlorane 602 (Dec 602) with food web magnification potential has been detected in daily food. People who were orally exposed to Dec 602 may encounter increased risk of health problems in the gut. In order to reveal the influence of short-term exposure of Dec 602 on gut immunity and microbiota, adult female C57BL/6 mice were administered orally with Dec 602 (low/high doses: 1.0/10.0 μg/kg body weight per day) for 7 days. Lymphocytes were examined by flow cytometry. Gut microbiota was measured by 16S rRNA gene sequencing. Results showed that fecal IgA was upregulated after exposure to the high dose of Dec 602, suggesting that there might be inflammation in the gut. Then, changes of immune cells in mesenteric lymph nodes and colonic lamina propria were examined. We found that exposure to the high dose of Dec 602 decreased the percentages of the anti-inflammatory T regulatory cells in mesenteric lymph nodes. In colonic lamina propria, the production of gut protective cytokine interleukin-22 by CD4⁺ T cells was decreased, and a decreased trend of interleukin-22 production was also observed in type 3 innate lymphoid cells in the high dose group. Furthermore, an altered microbiota composition toward inflammation in the gut was observed after exposure to Dec 602. Additionally, the altered microbiota correlated with changes of immune parameters, suggesting that there were interactions between influenced microbiota and immune parameters after exposure to Dec 602. Taken together, short-term exposure to Dec 602 induced gut immunity and microbiota perturbations, and this might be the mechanisms for Dec 602 to elicit inflammation in the gut.
Показать больше [+] Меньше [-]A decade of CO2 flux measured by the eddy covariance method including the COVID-19 pandemic period in an urban center in Sakai, Japan Полный текст
2022
Ueyama, Masahito | Takano, Tsugumi
Cities constitute an important source of greenhouse gases, but few results originating from long-term, direct CO₂ emission monitoring efforts have been reported. In this study, CO₂ emissions were quasi-continuously measured in an urban center in Sakai, Osaka, Japan by the eddy covariance method from 2010 to 2021. Long-term CO₂ emissions reached 22.2 ± 2.0 kg CO₂ m⁻² yr⁻¹ from 2010 to 2019 (± denotes the standard deviation) in the western sector from the tower representing the densely built-up area. Throughout the decade, the annual CO₂ emissions remained stable. According to an emission inventory, traffic emissions represented the major source of CO₂ emissions within the flux footprint. The interannual variations in the annual CO₂ flux were positively correlated with the mean annual traffic counts at two highway entrances and exits. The CO₂ emissions decreased suddenly, by 32% ± 3.1%, in April and May 2020 during the period in which the first state of emergency associated with COVID-19 was declared. The annual CO₂ emissions also decreased by 25% ± 3.1% in 2020. Direct long-term observations of CO₂ emissions comprise a useful tool to monitor future emission reductions and sudden disruptions in emissions, such as those beginning in 2020 during the COVID-19 pandemic.
Показать больше [+] Меньше [-]Abundance and characteristics of microplastics in an urban wastewater treatment plant in Turkey Полный текст
2022
Üstün, Gökhan Ekrem | Bozdaş, Kübra | Can, Tuğba
Wastewater treatment plants (WWTPs) are considered one of the important sources of aquatic/terrestrial microplastic (MP) pollution. Therefore, the abundance and properties of MPs in the wastewater and sludge of an urban WWTP in Bursa Turkey were investigated. The amount, properties, and removal of MPs were evaluated. The results showed that the average abundance of MPs was 135.3 ± 28.0 n/L in the influent and 8.5 ± 4.7 n/L in the effluent, with a 93.7% removal rate, MP was removed and transferred to the sludge. The daily MP amount released in the aquatic environment is calculated as 525 million MPs, and the annual amount is 1.9 × 10¹¹ MPs. The abundance of MPs in the sludge thickening and sludge filter cake is 17.9 ± 2.3 and 9.5 ± 2.3 n/g dry weight (dw), respectively. The sludge disposal amount of WWTP is 81.5 tons/day and the approximate amount of MP accumulated in the sludge per year is calculated as 2.8 × 10¹¹ MPs. In wastewater and sludge samples, fragment dominant shape, black main colour, and 500–1000 μm sizes are the most common size. The main MP types in wastewater samples at the influent are polypropylene (PP, 36.8%), polyethylene (PE, 31.0%), polystyrene (PS, 11.8%), polyethylene terephthalate (PET, 8.0%), and polyamide (PA, 7.1%), at the effluent (PE, 33.0%), (PP, 52.5%), and (PS, 8.2%). In the sludge cake, the distribution is (PE, 40.8%), (PP, 27.6%), (PS, 18.7%) and (PET, 8.0%). The results of this study show that MPs are removed from wastewater with high efficiency by treatment processes and a significant amount accumulates in the sludge. Therefore, it is suggested that to integrate advanced treatment processes into urban WWTPs and use effective sludge disposal management practices to reduce the amount of MP released into the environment with effluent and sludge.
Показать больше [+] Меньше [-]Aquatic macrophytes mitigate the short-term negative effects of silver nanoparticles on denitrification and greenhouse gas emissions in riparian soils Полный текст
2022
He, Gang | Shu, Shi | Liu, Guihua | Zhang, Quanfa | Liu, Yi | Jiang, Ying | Liu, Wenzhi
Silver nanoparticles (AgNPs) are increasingly released into the aquatic environments because of their extensive use in consumer products and industrial applications. Some researchers have explored the toxicity of AgNPs to nitrogen (N) and carbon (C) cycles, but little is known about the role of aquatic plants in regulating the impact of AgNPs on these biogeochemical processes and related microorganisms. Here, two 90-day pot experiments were conducted to determine the effect of AgNPs on denitrification rates and greenhouse gas emissions in riparian wetland soils, with or without emergent plants (Typha minima Funck). As a comparison, the toxicity of equal concentration of AgNO₃ was also determined. The results showed that AgNPs released a great quantity of free Ag⁺, most of which was accumulated in soils, while little (less than 2%) was absorbed by plant shoots and roots. Both AgNPs and AgNO₃ could increase the soil redox potential and affect the growth and nutrient (N and phosphorus) uptake of plants. In soils with plants, there was no significant difference in denitrification rates and emissions of N₂O and CH₄ between control and AgNPs or AgNO₃ treatments at all tested concentrations (0.5, 1 and 10 mg kg⁻¹). However, low levels of AgNPs (0.5 mg kg⁻¹) significantly enhanced CO₂ emission throughout the experiment. Interestingly, in the absence of plants, a high dosage (10 mg kg⁻¹) of AgNPs generally inhibited soil denitrification and stimulated the emissions of CO₂, CH₄ and N₂O in the short-term. Meanwhile, the abundance of key denitrifying genes (nirS and nirK) was significantly increased by exposure to 10 mg kg⁻¹ AgNPs or AgNO₃. Our results suggest that emergent plants can alleviate the short-term negative effects of AgNPs on N and C cycling processes in wetland soils through different pathways.
Показать больше [+] Меньше [-]Obesogenic effect of erythromycin on Caenorhabditis elegans through over-eating and lipid metabolism disturbances Полный текст
2022
Luo, Zhili | Yu, Zhenyang | Yin, Daqiang
Environmental obesogens contributed significantly to the obesity prevalence. Recently, antibiotics joined the list of environmental obesogens, while the underlying mechanisms remained to be explored. In the present study, effects of erythromycin (ERY), one widely used macrolide antibiotic, were measured on C. elegans to investigate the obesogenic mechanism. Results showed that ERY at 0.1 μg/L significantly increased the fat content by 17.4% more than the control and also stimulated triacylglycerol (TAG) levels by 25.7% more than the control. Regarding the obesogenic mechanisms, ERY provoked over-eating by stimulation on the pharyngeal pumping and reduction on the satiety quiescence percentage and duration. Such effects were resulted from stimulation on the neurotransmitters including serotonin (5-HT), dopamine (DA) and acetylcholine (ACh). The nervous responses involved the up-regulation of Gsα (e.g., ser-7, gsa-1, acy-1 and kin-2) signaling pathway and the down-regulation of TGFβ (daf-7) but not via cGMP-dependent regulations (e.g., egl-4). Moreover, ERY stimulated the activities of fatty acid synthase (FAS) and glycerol-3-phosphateacyl transferases (GPAT) that catalyze lipogenesis, while ERY inhibited those of acyl-CoA synthetase (ACS), carnitine palmitoyl transferase (CPT) and acyl-CoA oxidase (ACO) that catalyze lipolysis. The unbalance between lipogenesis and lipolysis resulted in the fat accumulation which was consistent with up-regulation on mgl-1 and mgl-3 which are the down-steam of TGFβ regulation. Such consistence supported the close connection between nervous regulation and lipid metabolism. In addition, ERY also disturbed insulin which connects lipid with glucose in metabolism.
Показать больше [+] Меньше [-]Integrating Bayesian Belief Networks in a toolbox for decision support on plastic clean-up technologies in rivers and estuaries Полный текст
2022
Leone, Giulia | Catarino, Ana I. | Pauwels, Ine | Mani, Thomas | Tishler, Michelle | Egger, Matthias | Forio, Marie Anne Eurie | Goethals, Peter L.M. | Everaert, Gert
Current mitigation strategies to offset marine plastic pollution, a global concern, typically rely on preventing floating debris from reaching coastal ecosystems. Specifically, clean-up technologies are designed to collect plastics by removing debris from the aquatic environment such as rivers and estuaries. However, to date, there is little published data on their potential impact on riverine and estuarine organisms and ecosystems. Multiple parameters might play a role in the chances of biota and organic debris being unintentionally caught within a mechanical clean-up system, but their exact contribution to a potential impact is unknown. Here, we identified four clusters of parameters that can potentially determine the bycatch: (i) the environmental conditions in which the clean-up system is deployed, (ii) the traits of the biota the system interacts with, (iii) the traits of plastic items present in the system, and, (iv) the design and operation of the clean-up mechanism itself. To efficiently quantify and assess the influence of each of the clusters on bycatch, we suggest the use of transparent and objective tools. In particular, we discuss the use of Bayesian Belief Networks (BBNs) as a promising probabilistic modelling method for an evidence-based trade-off between removal efficiency and bycatch. We argue that BBN probabilistic models are a valuable tool to assist stakeholders, prior to the deployment of any clean-up technology, in selecting the best-suited mechanism to collect floating plastic debris while managing potential adverse effects on the ecosystem.
Показать больше [+] Меньше [-]Multi-ionic interaction with magnesium doped hydroxyapatite-zeolite nanocomposite porous polyacrylonitrile polymer bead in aqueous solution and spiked groundwater Полный текст
2022
G, Alagarsamy | P, Nithiya | R, Sivasubramanian | R, Selvakumar
Removal of multi-ionic contaminants from water resources has been a major challenge faced during the treatment of water for drinking and industrial applications. In the present study, varying composition of magnesium doped hydroxyapatite (Mg-HAp) and zeolite nanocomposite embedded porous polymeric beads were synthesized using solvent displacement method and its sorption efficiency towards multi-ion contaminant (such as Ag, Al, As, Ba, Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, Se, Tl, Th, U, V and Zn) was investigated in aqueous solution and spiked groundwater. The prepared beads were characterized using suitable techniques like high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) equation. The surface area and pore radius of the beads varied from 6.996 to 66.469 m²/g and 1.698–3.960 nm respectively according to the composition of the bead. The control bead without nanocomposite showed maximum surface area. Multi-ion adsorptions onto beads were confirmed using an inductively coupled plasma-optical emission spectrophotometer (ICP-OES) and X-ray photoelectron spectrophotometer (XPS). The sorption efficiency was high at pH 5 owing to its anionic surface charge leading to an increase in affinity towards the cations. For validating field application, selected high performance beads were tested in multi-ion spiked groundwater. The results indicated that the Mg-HAp nanocomposite bead dominate all the other bead compositions with more than 90% removal efficiency for most of the multi-ion contaminants. The feasible adsorption mechanism has been discussed. This adsorption study revealed that the Mg-HAp nanocomposite bead is a promising material that is cost-effective, non-toxic, biodegradable, eco-friendly and highly efficient towards the removal of multi-ionic contaminants from groundwater.
Показать больше [+] Меньше [-]