Уточнить поиск
Результаты 941-950 из 4,935
Development of an ammonium chloride-enhanced thermal-assisted-ESI LC-HRMS method for the characterization of chlorinated paraffins Полный текст
2019
Zheng, Li | Lian, Lushi | Nie, Jianxin | Song, Yue | Yan, Shuwen | Yin, Daqiang | Song, Weihua
Simultaneous quantification of short-, medium-, and long-chain chlorinated paraffins (CPs) in environmental matrices is challenging and has received much attention from environmental chemists. In this study, ammonium-chloride-enhanced liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) was developed for the first time to quantify CPs in sediments and aqueous samples. Three ionization sources, including atmospheric pressure chemical ionization (APCI), electrospray ionization (ESI), and thermal-assisted-ESI, were employed to examine the performance of ammonium chloride as the chloride ion supply reagent in comparison with traditional chloride ion supply reagent, dichloromethane. Ammonium chloride can be easily used with reversed-phase liquid chromatography (LC), whereas dichloromethane is not compatible with aqueous LC mobile phase. Furthermore, other anion-supply reagents, such as ammonium formate, ammonium acetate, and ammonium bromide, were also tested. It was concluded that the adducts of the CPs with the anions were reversible and could partially dissociate into deprotonated CP ions. The yield of deprotonated CP ions was associated with the gas-phase basicity of the deprotonated CP ions and the corresponding anions. Furthermore, collision-induced dissociation curves were drawn to quantify the stability of anionic CP adducts. The ammonium-chloride-enhanced LC-HRMS was further employed for identifying CPs in sediment samples and coupled with an online SPE method for detecting CPs in aqueous samples. This study may significantly contribute to the qualification and quantification of CPs in environmental matrices.
Показать больше [+] Меньше [-]Effect of lipopolysaccharide on diesel exhaust particle-induced junctional dysfunction in primary human nasal epithelial cells Полный текст
2019
Kim, Nahyun | Han, Doo Hee | Suh, Myung-Whan | Lee, Jun-Ho | Oh, Seung-Ha | Park, Moo Kyun
Tight junctions (TJs) in the epithelium play a critical role in the formation of a paracellular epithelial barrier against the extracellular environment. Diesel exhaust particles (DEPs) disrupt the epithelial barrier. The aim of this study was to investigate how DEPs disrupt the epithelial barrier and whether Toll-like receptor 4 (TLR4) is involved in DEP-induced epithelial barrier dysfunction in primary human nasal epithelial (PHNE) cells.PHNE cells were cultured at an air–liquid interface (ALI) to create a fully differentiated in vivo-like model of the epithelium and then exposed to DEPs (particulate matter <4 μm) or lipopolysaccharide (LPS) alone (mono-exposure) and DEPs plus LPS (co-exposure) at the apical side of the PHNE. TJ formation and integrity were monitored by measuring transepithelial electric resistance (TEER) and fluorescently labeled dextran permeability. The expression of TJ proteins was assessed by confocal microscopy and a biochemical assay.PHNE cell viability was reduced in a time- and dose-dependent manner following DEP exposure. TEER was significantly decreased at ALI day 20 but not at day 12 following DEP exposure. The dextran permeability of the PHNE was significantly increased at both ALI day 12 and day 20 following DEP exposure. The increased dextran permeability recovered to that of the control following co-exposure to DEPs plus LPS. In the presence of DEPs, the membrane expression of myosin light chain kinase (MLCK) was dramatically increased, and the expression of occludin, ZO1, claudin-1, and E-cadherin was significantly decreased. Co-exposure to DEPs plus LPS significantly reduced membrane MLCK, claudin-1, and E-cadherin but increased occludin and ZO1 expression at ALI day 12.The activation of TLR4 by LPS inhibits MLCK trafficking to the plasma membrane, and this increased during DEP exposure, resulting in increased occludin expression at the plasma membrane that partially recovered TJ barrier dysfunction following DEP exposure.
Показать больше [+] Меньше [-]Emissions from a fast-pyrolysis bio-oil fired boiler: Comparison of health-related characteristics of emissions from bio-oil, fossil oil and wood Полный текст
2019
Sippula, Olli | Huttunen, Kati | Hokkinen, Jouni | Kärki, Sara | Suhonen, Heikki | Kajolinna, Tuula | Kortelainen, Miika | Karhunen, Tommi | Jalava, Pasi | Uski, Oskari | Yli-Pirilä, Pasi | Hirvonen, Maija-Riitta | Jokiniemi, Jorma
There is currently great interest in replacing fossil-oil with renewable fuels in energy production. Fast pyrolysis bio-oil (FPBO) made of lignocellulosic biomass is one such alternative to replace fossil oil, such as heavy fuel oil (HFO), in energy boilers. However, it is not known how this fuel change will alter the quantity and quality of emissions affecting human health. In this work, particulate emissions from a real-scale commercially operated FPBO boiler plant are characterized, including extensive physico-chemical and toxicological analyses. These are then compared to emission characteristics of heavy fuel-oil and wood fired boilers. Finally, the effects of the fuel choice on the emissions, their potential health effects and the requirements for flue gas cleaning in small-to medium-sized boiler units are discussed.The total suspended particulate matter and fine particulate matter (PM₁) concentrations in FPBO boiler flue gases before filtration were higher than in HFO boilers and lower or on a level similar to wood-fired grate boilers. FPBO particles consisted mainly of ash species and contained less polycyclic aromatic hydrocarbons (PAH) and heavy metals than had previously been measured from HFO combustion. This feature was clearly reflected in the toxicological properties of FPBO particle emissions, which showed less acute toxicity effects on the cell line than HFO combustion particles. The electrostatic precipitator used in the boiler plant efficiently removed flue gas particles of all sizes. Only minor differences in the toxicological properties of particles upstream and downstream of the electrostatic precipitator were observed, when the same particulate mass from both situations was given to the cells.
Показать больше [+] Меньше [-]Antibiotic resistance genes and bacterial communities in cornfield and pasture soils receiving swine and dairy manures Полный текст
2019
Chen, Zeyou | Zhang, Wei | Yang, Luxi | Stedtfeld, Robert D. | Peng, Anping | Gu, Cheng | Boyd, Stephen A. | Li, Hui
Land application of animal manure could change the profiles of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and bacterial communities in receiving soils. Using high-throughput real-time quantitative PCR and 16S rRNA amplicon sequencing techniques, this study investigated the ARGs and bacterial communities in field soils under various crop (corn and pasture) and manure (swine and dairy) managements, which were compared with those of two non-manured reference soils from adjacent golf course and grassland. In total 89 unique ARG subtypes were found in the soil samples and they conferred resistance via efflux pump, cellular protection and antibiotic deactivation. Compared to the ARGs in the golf course and grassland soils (28 and 34 subtypes respectively), manured soils generally had greater ARG diversity (36–55 subtypes). Cornfield soil frequently receiving raw swine manure had the greatest ARG abundance. The short-term (one week) application of composted and liquid swine manures increased the diversity and total abundance of ARGs in cornfield soils. Intriguingly the composted swine manure only marginally increased the total abundance of ARGs, but substantially increased the number of ARG subtypes in the cornfield soils. The network analysis revealed three major network modules in the co-occurrence patterns of ARG subtypes, and the hubs of these major modules (intl1-1, vanC, and pncA) may be candidates for selecting indicator genes for surveillance of ARGs in manured soils. The network analyses between ARGs and bacteria taxa revealed the potential host bacteria for the detected ARGs (e.g., aminoglycoside resistance gene aacC4 may be mainly carried by Acidobacteriaceae). Overall, this study highlighted the potentially varying impact of various manure management on antibiotic resistome and microbiome in cornfield and pasture soils.
Показать больше [+] Меньше [-]A rapid zebrafish embryo behavioral biosensor that is capable of detecting environmental β-blockers Полный текст
2019
Gauthier, Patrick T. | Vijayan, Mathilakath M.
β-Blockers (BB) are one of the most commonly prescribed pharmaceuticals used for treating cardiovascular and acute anxiety-related disorders. This class of drugs inhibit β-adrenoceptor signalling and given their growing, widespread use, BB are routinely detected in surface waters at nM concentrations. This is concerning as trace levels of BB impart developmental and reproductive dysfunction in non-target aquatic organisms, with potential for ecological risks. To date, environmental pharmaceutical risks to non-target animals are not part of the monitoring framework due to the lack of bioassays for assessing their biological effects. Behavioral endpoints have the advantage of a systems-level integration of multiple sensory signals and motor responses for toxicity screening; however, they are not currently used for risk assessment of environmental contaminants. The zebrafish (Danio rerio) embryo photomotor response (zfPMR) has been used in high-throughput behavioral screenings for neuroactive drug effects at high, therapeutic concentrations. Our objective here was to examine if we could utilize the zfPMR for screening environmental levels of BB. Embryos were placed into 96-well plates, exposed to chemicals and/or municipal wastewater effluent (MWWE), and their zfPMRs were measured with video-analysis. To specifically target BB, embryos were co-treated with isoproterenol, a β-adrenergic agonist that stimulates the zfPMR, and the inhibition of isoproterenol-induced response was used as a biomarker of BB exposure. Our results reveal that the inhibition of isoproterenol-stimulated zfPMRs can be used as a biosensor capable of detecting BB in the parts-per-billion to parts-per-trillion in water samples, including diluted MWWE. The method developed detects BB in spite of the presence of other neuroactive compounds in water samples. This systems level approach of rapid screening for BB effects provides the most promising evidence to date that behavioral neuromodulation can be potentially applied for environmental effects monitoring of pharmaceuticals.
Показать больше [+] Меньше [-]Bibliometric study of the toxicology of nanoescale zero valent iron used in soil remediation Полный текст
2019
Vanzetto, Guilherme Victor | Thomé, Antonio
The application of nanoscale zero-valent iron is one of the most widely used remediation technologies; however, the potential environmental risks of this technology are largely unknown. In order to broaden the knowledge on this subject, the present work consists of a bibliometric study of all of publications related to the toxicity of zero-valent iron nanoparticles used in soil remediation available from the Scopus (Elsevier) and Web of Science (Thompson Reuters) databases. This study presents a temporal distribution of the publications, the most cited articles, the authors who have made the greatest contribution to the theme, and the institutions, countries, and scientific journals that have published the most on this subject. The use of bibliometrics has allowed for the visualization of a panorama of the publications, providing an appropriate analysis to guide new research towards an effective contribution to science by filling the existing gaps. In particular, the lack of studies in several countries reveals a promising area for the development of further research on this topic.
Показать больше [+] Меньше [-]Associations between long-term exposure to ambient air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis Полный текст
2019
Liu, Feifei | Chen, Gongbo | Huo, Wenqian | Wang, Chongjian | Liu, Suyang | Li, Na | Mao, Shuyuan | Hou, Yitan | Lu, Yuanan | Xiang, Hao
Previous meta-analyses on associations between air pollution (AP) and type 2 diabetes mellitus (T2DM) were mainly focused on studies conducted in high-income countries. Evidence should be updated by including more recent studies, especially those conducted in low- and middle-income countries. We therefore conducted a systematic review and meta-analysis of epidemiological studies to conclude an updated pooled effect estimates between long-term AP exposure and the prevalence and incidence of T2DM. We searched PubMed, Embase, and Web of Science to identify studies regarding associations of AP with T2DM prevalence and incidence prior to January 2019. A random-effects model was employed to analyze the overall effects. A total of 30 articles were finally included in this meta-analysis. The pooled results showed that higher levels of AP exposure were significantly associated with higher prevalence of T2DM (per 10 μg/m3 increase in concentrations of particles with aerodynamic diameter < 2.5 μm (PM2.5): odds ratio (OR) = 1.09, 95% confidence interval (95%CI): 1.05, 1.13; particles with aerodynamic diameter < 10 μm (PM10): OR = 1.12, 95%CI: 1.06, 1.19; nitrogen dioxide (NO2): OR = 1.05, 95%CI:1.03, 1.08). Besides, higher level of PM2.5 exposure was associated with higher T2DM incidence (per 10 μg/m3 increase in concentration of PM2.5: hazard ratio (HR) = 1.10, 95%CI:1.04, 1.16), while the associations between PM10, NO2 and T2DM incidence were not statistically significant. The associations between AP exposure and T2DM prevalence showed no significant difference between high-income countries and low- and middle-incomes countries. However, different associations were identified between PM2.5 exposure and T2DM prevalence in different geographic areas. No significant differences were found in associations of AP and T2DM prevalence/incidence between females and males, except for the effect of NO2 on T2DM incidence. Overall, AP exposure was positively associated with T2DM. There still remains a need for evidence from low- and middle-income countries on the relationships between AP and T2DM.
Показать больше [+] Меньше [-]Biotransformation and detoxification of the neonicotinoid insecticides nitenpyram and dinotefuran by Phanerochaete sordida YK-624 Полный текст
2019
Wang, Jianqiao | Tanaka, Yusuke | Ohno, Haruka | Jia, Jianbo | Mori, Toshio | Xiao, Tangfu | Yan, Bing | Kawagishi, Hirokazu | Hirai, Hirofumi
Neonicotinoid insecticides have been widely used throughout the world over the last two decades. In the present study, we investigated the degradation of neonicotinoid insecticides nitenpyram (NIT) and dinotefuran (DIN) by the white-rot fungus Phanerochaete sordida YK-624. While NIT was completely degraded by P. sordida YK-624 under ligninolytic conditions, only a 20% decrease was observed under nonligninolytic conditions. On the other hand, P. sordida YK-624 degraded 31% of DIN under ligninolytic conditions after a 20-day incubation, while it did not degrade DIN under nonligninolytic conditions. We found that cytochromes P450 played a key role in the biotransformation of NIT and DIN by P. sordida YK-624. A novel NIT metabolite (E)-N-((6-chloropyridin-3-yl)methyl)-N-ethyl-N′-hydroxy acetimidamide (CPMHA) and a novel DIN metabolite N-((4aS,7aS,E)-1-methylhexahydrofuro[2,3-d]pyrimidin-2(1H)-ylidene)nitramide (PHPF) were identified in this study. In addition, to evaluate neurotoxicity, the effects of NIT, DIN and their metabolites on the viability of human neuroblastoma cells SH-SY5Y were determined. PHPF showed higher neurological toxicity than DIN, whereas the metabolite of NIT, CPMHA, showed no toxic effect. Our results indicated that the neurological toxicity of NIT could be effectively removed by P. sordida YK-624.
Показать больше [+] Меньше [-]Modeling phosphorus sources and transport in a headwater catchment with rapid agricultural expansion Полный текст
2019
Zhang, Wangshou | Pueppke, Steven G. | Li, Hengpeng | Geng, Jianwei | Diao, Yaqin | Hyndman, David W.
Increasing riverine phosphorus (P) levels in headwaters due to expanded and intensified human activities are worldwide concerns, because P is a well-known limiting nutrient for freshwater eutrophication. Here we adopt the conceptual framework of the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model to describe total phosphorus (TP) sources and transport in a headwater watershed undergoing rapid agricultural expansion in the upper Taihu Lake Basin, China. Our models, which include variables for land cover, river length, runoff depth, and pond density, explain 94% of the spatio-temporal variability in TP loads. Agricultural lands contribute the largest percentage (61%) of the TP loads delivered downstream, followed by forestland (21%) and urban land (18%). Future agricultural expansion to 15% of the total basin area is possible, which could lead to a 50% increase in TP loads. According to our analysis, an average of 24% of the total P export from the watershed landscape was intercepted in ponds. The exported amount was subsequently retained by tributaries and along the mainstem river, accounting for 14% and 43% of their inflowing loads, respectively. The remaining ∼6 tons yr⁻¹ of TP was eventually transported into Tianmu Lake, in Southeastern China. The model identified several sub-catchments as hotspots of TP loss and thus logical sites for targeted management. Our study underscores the significance of agricultural expansion as a factor that can exacerbate headwater TP pollution, highlighting the importance of landscapes to buffer TP losses from sensitive hilly catchments. This also points to a need for an integrated management strategy that considers the spatial-varying P sources and associated transport of TP in precious headwater resources.
Показать больше [+] Меньше [-]Benzo[a]pyrene (BaP) exposure generates persistent reactive oxygen species (ROS) to inhibit the NF-κB pathway in medaka (Oryzias melastigma) Полный текст
2019
Cui, Qian | Chen, Fang-Yi | Chen, Hui-Yun | Peng, Hui | Wang, Ke-Jian
Benzo[a]pyrene (BaP), a common environmental pollutant, can modulate the immune-associated signal pathway NF-κB, which is one of the critical signal pathways involved in various immune responses. BaP exposure usually generates reactive oxygen species (ROS), but whether ROS are predominantly involved in the modulation mechanism of the NF-κB pathway has not been clearly understood. In this study, an in vivo examination of Oryzias melastigma demonstrated that BaP exposure led to a down-regulation of the NF-κB pathway and increased levels of ROS. Conversely, in vitro results using the medaka liver cell line DIT-29 and a widely applied H₂O₂ method showed the opposite: up-regulation of the NF-κB pathway. However, the down-regulation of NF-κB upon BaP exposure in vitro was inhibited by the addition of a ROS inhibitor, indicating ROS are involved in the modulation of NF-κB. The discrepancy between in vivo and in vitro results of ROS impacts on NF-κB activation might be related to the concentration and persistence of ROS. Using a modified luminol detection system, BaP was found to generate sustained physiological concentrations of ROS for 24 h, while an H₂O₂ bolus generated ROS for less than 30 min. Furthermore, a steady-state sub-micromolar H₂O₂ system (H₂O₂ss) was developed in parallel as a positive control of ROS, by which H₂O₂ could be maintained for 24 h. Comparative evaluation using H₂O₂, H₂O₂ss and BaP exposures on the medaka cell line with pGL4.32 demonstrated that the persistent physiological concentrations of ROS generated upon BaP exposure or treatment with H₂O₂ss inhibited the NF-κB pathway, but direct H₂O₂ exposure had the opposite effect. Moreover, a western-blot assay and EMSA detection further confirmed the modulation of the NF-κB pathway in DIT-29. Taken together, this study shows that BaP exposure inhibits the NF-κB pathway by generating sustained physiological concentrations of ROS.
Показать больше [+] Меньше [-]